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ABSTRACT
Improvingmachine learningmodels’ fairness is an active research
topic, with most approaches focusing on specific definitions of
fairness. In contrast, we propose ParDS, a parametrised data
sampling method by which we can optimise the fairness ratios
observed on a test set, in a way that is agnostic to both the specific
fairness definitions, and the chosen classification model. Given
a training set with one binary protected attribute and a binary
label, our approach involves correcting the positive rate for both
the favoured and unfavoured groups through resampling of the
training set. We present experimental evidence showing that the
amount of resampling can be optimised to achieve target fairness
ratios for a specific training set and fairness definition, while
preserving most of the model’s accuracy. We discuss conditions
for the method to be viable, and then extend the method to
include multiple protected attributes. In our experiments we use
three different sampling strategies, and we report results for
three commonly used definitions of fairness, and three public
benchmark datasets: Adult Income, COMPAS and German Credit.

1 INTRODUCTION
The increasing presence of automated decisions in our lives has
led to a rising concern about the way in which these decisions
are taken, spurring research into the fairness of predictive mod-
els. These models are often learnt from biased data, reflecting
historical disparities and discrimination [27]. We propose ParDS,
a fairness-definition and classifier agnostic resampling method,
which may be easily implemented on top of existing ML solutions
and can satisfy specific classification model requirements. ParDS
is modulated through the continuous parameter 𝑑 , which deter-
mines the amount of resampling introduced into the training
data, and has two possible use cases: to find the optimal amount
of correction for a specific fairness/classifier combination and to
control a classifier’s fairness/accuracy trade-off.

Standard data preparation techniques may be used to correct
the fairness behaviour of a classification model [29]. ParDS is
based on data resampling, which is well understood and part
of the typical data management pipeline [23]. Being a prepro-
cessing operator, ParDS may easily be incorporated along data
cleaning into existing database solutions. Like other resampling
techniques, ParDS can be computationally inexpensive and yield
reduced classifier learning times, as shown in Subsection 4.2.
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Our method offers the versatility of using both generic (ran-
dom undersampling, random oversampling and SMOTE [6]) and
fairness-specific (preferential sampling [20]) methods.

Multiple definitions of fairness have been proposed [25], which
are sometimes in contrast with one another. A decision rule that
satisfies one of the definitions may well prove to be very unfair
for a different one [10]. For example, determining university
admissions through gender quotas may achieve demographic
parity, but it makes the acceptance rates for good students of
different genders disparate.

A common resampling problem is the loss of predictive ac-
curacy caused by such interventions [3]. In our setting, such
loss can also be controlled through parameter 𝑑 , allowing for a
decision in the amount of accuracy/fairness trade-off the user
is willing to accept. Furthermore, our experiments in Section 4
show that even at high correction levels, the accuracy loss for
ParDS is relatively low.

1.1 Related Work
A classifier’s fairness may be corrected by preprocessing the train-
ing data, in-processing the learning algorithm [1, 5, 30–32] or
post-processing a classifier’s predictions [18]. Our method be-
longs to the group of preprocessing solutions.

Fairness-aware preprocessing is defined [14] as a set of tech-
niques that modify input data so that any classifier trained on
such data will be fair. There are four main ways in which to make
appropriate adjustments to data in order to enforce fairness [21]:
suppressing certain features, also known as fairness through
unawareness (FTU) [15], massaging variable values [4, 9, 13],
reweighing features [19, 24], and resampling data instances [8,
20, 28, 29].

Data resampling, the category of ParDS, is less invasive in na-
ture than FTU or massaging, since the original data is preserved
and only the frequency with which the instances are represented
is modified. In contrast, FTU disposes of large amounts of data
without a guarantee on the effect of said intervention andmassag-
ing effectively creates synthetic data, which does not necessarily
reflect the ground truth.

Preferential Sampling (PS) [20] is a similar method to ParDS,
in the sense that it resamples the favoured/unfavoured and pos-
itive/negative combinations separately in order to equalise the
favoured and unfavoured groups’ positive ratios. We empirically
show that the optimal fairness correction depends on the selected
sampling method, classifier and fairness definition. Equalising
the positive ratios across protected attribute groups is not neces-
sarily the best approach, hence we modulate our corrections via
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parameter 𝑑 . When using PS to resample, ParDS generalises it,
with the unmodified PS corresponding to the 𝑑 = 0 case.

SMOTEBoost [8] oversamples the minority group through syn-
thetic data based on real data instances, with a focus on improved
minority predictions and indirectly improving fairness.

Other related methods include Capuchin [29], a causal-fairness
centric, non-parametrised resampling method and Feldman et al.
[13], a massaging method where parameter 𝜆 is used to create
linear interpolations of the original dataset and a repaired copy
to find the optimal combination.

1.2 Contributions
We introduce ParDS, a parametrised resampling-based fairness-
correcting method. ParDS is fairness-definition and classifier
agnostic, and achieves close to optimal fairness correction with
a small loss in predictive performance. We present extensive
experiments to benchmark the effectiveness of the method using
the Adult Income, COMPAS and German Credit datasets, and our
implementation is available as a collection of Jupyter Notebooks at
https://github.com/vladoxNCL/fairCorrect. This is a substantial
extension of our preliminary workshop paper [17], presented
at the 2019 KDD XAI Workshop. Its additional contributions are
four-fold:

(1) We estimate the optimal fairness correction using Bayesian
optimisation.

(2) We present experimental evidence on synthetic datasets
of our method’s viability and effectiveness with respect to
the linear separability of the training set.

(3) Wemake an initial investigation into extending themethod
to multiple protected attributes.

(4) We benchmark and compare our work with several exist-
ing fairness-correction methods.

2 DEFINITIONS
We will say a binary classifier’s label can be positive or nega-
tive referring to the desirable and non-desirable outcome of a
prediction, respectively.

A dataset’s protected attribute (PA) refers to a variable that may
be object of discrimination, due to historical bias or otherwise.
In our particular case we will be dealing with a single binary PA.

We will call the ratio of the number of positive instances
divided by the total number of instances in a specific group the
positive ratio (PR) of the group.

Among the two PA groups, the one having the highest PR will
be referred to as the favoured group 𝐹 , while the other one will
be referred to as the unfavoured group 𝑈 . When required, we
will refer to the positive and negative instances of 𝐹 and𝑈 as 𝐹+,
𝐹−,𝑈 + and𝑈 −, respectively.

We based our analyses on three ratios, Demographic Parity
Ratio (DPR), Equality of Opportunity Ratio (EOR) and Proxy Fair-
ness Ratio (PFR), associated to their respective fairness defini-
tions [22, 25]. In these definitions, the positive label is identified
with 𝑌 = 1 and the negative label with 𝑌 = 0.

Definition 2.1 (Fairness Ratios).

DPR B
P(𝑌 = 1 | PA = 𝑈 )
P(𝑌 = 1 | PA = 𝐹 )

,

EOR B
P(𝑌 = 1 | PA = 𝑈 ,𝑌 = 1 )
P(𝑌 = 1 | PA = 𝐹,𝑌 = 1 )

,

PFR B
P(𝑌 = 1 | do (PA = 𝑈 ) )
P(𝑌 = 1 | do (PA = 𝐹 ) )

.

For DPR and EOR, we evaluate the ratio of the positive classifi-
cation probabilities for 𝑈 and 𝐹 . PFR is computed by intervening
on the test set 𝑇 twice, assigning every individual in 𝑇 the PA-
values𝑈 and 𝐹 , resulting in 𝑇PA=𝑈 and 𝑇PA=𝐹 , respectively. We
then evaluate the quotient of the intervened sets’ classification
PRs; in all cases, the ratios quantify how close the classifier comes
to optimal fairness.

3 METHODOLOGICAL APPROACH
Wehave focused on datasets with both binary protected attributes
and labels. The plots in this section result from applying ParDS
to the Adult Income (Income) dataset [12].

We introduce the disparity correction parameter 𝑑 ∈ [−1, 1],
which may be used for two different objectives:

• To modulate a classifier’s fairness/accuracy trade-off.
• To optimise a classifier with respect to a fairness definition.

Our main objective will be the third one, to estimate the 𝑑-
value optimising a classifier’s predictions with respect to a fair-
ness definition. We summarise the method as follows:

(1) Define PR-correcting functions for 𝐹 and𝑈 .
(2) Select a sampling strategy to correct the training set.
(3) Estimate the fairness-specific optimal 𝑑-value.

Details on each of these steps now follow.

3.1 Parametrising Correction
The first step is to define linear functions that will yield corrected
PRs for both PA groups. These functions, which we will call
f + (𝑑) and u+ (𝑑), should satisfy the constraints: f + (1) = PR(𝐹 ),
f + (−1) = PR(𝑈 ) and u+ (𝑑) = f + (−𝑑).

The equations for these two linear functions are

f + (𝑑) =𝑚𝑑 + 𝑏, u+ (𝑑) = −𝑚𝑑 + 𝑏,

with coefficients

𝑚 =
PR(𝐹 ) − PR(𝑈 )

2
, 𝑏 =

PR(𝐹 ) + PR(𝑈 )
2

.

3.2 Sampling Strategies
In the second step, we use the resulting corrected ratios f + (𝑑)
and u+ (𝑑) to produce a resampled training set {𝑈 , 𝐹 } satisfying
these ratios. The required amount of resampling for 𝐹 and𝑈 will
depend on 𝑑 and the selected strategy.

ParDS can use one of four different sampling methods, modi-
fied to work on specific PA-label subgroups: random undersam-
pling (Under), random oversampling (Over), SMOTE [7] and pref-
erential sampling (PS) [20]. Depending on the sampling method,
the following subgroups will be modified:
Under: Undersample 𝐹+ and𝑈 −.
Over: Oversample 𝐹− and𝑈 +.
SMOTE: Oversample 𝐹− and𝑈 +.
PS: Undersample 𝐹+ and𝑈 −, oversample 𝐹− and𝑈 +.
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Figure 1: Correcting functions f + (𝑑) and u+ (𝑑) applied to
Income and their effect on the test set. The 𝑑-axis is re-
versed, going from 1 (no correction) to −1 (maximum cor-
rection). Note that the test-set PRs do not intersect at𝑑 = 0.

The resampled 𝐹 must satisfy

|𝐹+ |
|𝐹+ | + |𝐹− |

= 𝑓 + (𝑑),

which may be rewritten as

|𝐹+ |
|𝐹− |

=
𝑓 + (𝑑)

1 − 𝑓 + (𝑑) . (1)

The selected strategy will determine whether 𝐹+ or 𝐹− will
be resampled to satisfy (1). Using Under, for example, 𝐹+ results
from undersampling 𝐹+, while 𝐹− = 𝐹−. In contrast, using Over
produces 𝐹− from oversampling 𝐹− while 𝐹+ = 𝐹+. An analogous
equation to (1) is used to resample𝑈 onto𝑈 .

After the training-set has been resampled, a classifier learnt
from the corrected training-set will display an improvement in
fairness with respect to a classifier learnt from the original data.
An example of the produced PR-correcting functions and their
effect over Income is shown in Figure 1.

3.3 Finding the Optimal Amount of Sampling
Finally, the third step is to estimate the optimal correction for
a specific fairness definition. As classification algorithms usu-
ally display non-linear—and sometimes unexpected—behaviours,
it is not possible to deduce a closed-form solution to this opti-
misation problem. Hence, it becomes necessary to numerically
approximate a solution.

A naïve approach is to compare the resulting fairness ratios
for different values of 𝑑 , and select the one producing the ratio
closest to 1. As we will see on Section 4.2.1, it is easy to find
𝑑-values close to the optimal by trial and error, yet this optimal
𝑑-value will usually be different for distinct fairness definitions.

A more systematic way to approximate the optimal value of 𝑑
is to use Bayesian optimisation [16]. This technique estimates the
objective function on candidate values obtained from previous
function estimations. The main reasons for choosing Bayesian
over other optimisation methods are that every fairness ratio
evaluationwill be different due to the randomness in the sampling
process and that Bayesian optimisation is good when estimating
the objective function is expensive, e.g. our setting, since we work
on large datasets and take the average over many estimations.

We have implemented a simple fairness optimiser using the
GPyOpt [2] package, with a standard Gaussian process using 𝑑
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Figure 2: Plot of GPyOpt’s approximation of DPR as func-
tion of 𝑑 for Income. The bottom red curve displays the
resulting distribution for the optimal 𝑑-value.

as the only parameter and the distances of the different fairness
ratios to 1 as objective functions, e.g. estimate the𝑑-value yielding
the fairest DPR expectation:

argmin
𝑑

|1 − E[DPR(𝑑)] | subject to − 1 ≤ 𝑑 ≤ 1.

An example run, used to approximate the optimal correction
for Demographic Parity on Income may be seen in Figure 2.

3.4 Multiple Protected Attributes
We have generalised ParDS to multi-class PAs, as well as to
multiple PA variables. In some cases, this could be addressed
by binning several PA labels into just two categories, 𝑢 and 𝑓 .
However, these arbitrary assignments would imply a loss of gran-
ularity in any subsequent fairness analysis. As an alternative, we
have chosen to consider a combined PA, which may be obtained
for every datapoint 𝑝 ∈ train as follows:

(1) Evaluate PR(𝐷) for the training set 𝐷 .
(2) Define a set of PAs: {PA1, PA2, . . . , PA𝑘 }.
(3) Evaluate

PR𝑖 (𝑝) = PR (PA𝑖 (𝑝)) − PR(𝐷)

for 𝑖 ∈ { 1, 2, . . . , 𝑘 }.
(4) Aggregate the partial PRs to obtain a combined value

PR∗ (𝑝) =
𝑘∑
𝑖=1

PR𝑖 (𝑝) .

(5) Define the combined PA of 𝑝 as

PA∗ (𝑝) =
{
𝐹 if PR∗ (𝑝) > 0,
𝑈 if PR∗ (𝑝) ≤ 0.

This solution allows for a much more granular approach on
determining a datapoint’s relative “prosperity” with respect to
every PA, as some PA attributes may prove to be more determin-
ing of disparate treatment than others, and the effects of several
PAs may cancel each other out.

Our experiments, carried out on Income, provide positive re-
sults, as described next. Figure 3 compares the effects—for un-
favoured groups of different PAs (Gender, Nationality, Race and
Age)—of applying disparity correction based on a single PA (Gen-
der) to doing it based on a combined PA aggregating Gender, Age,
Race and Country for Income. As can be seen, when correcting
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Figure 3: Positive ratios for the different PAs’ unfavoured
groups on Income, correcting for (a) one PA and (b) multi-
ple PAs.

for Gender alone, the other unfavoured groups’ PR remains rela-
tively constant or gets worse. Likewise, the overall PR shows a
drop on its PR as more correction is applied. When correcting
for the combined PA, on the other hand, all of the unfavoured
PRs improve at a similar rate, whilst the overall PR remains rel-
atively constant across different correction levels. In short, this
extension provides ParDS with the capability to correct for mul-
tiple biases simultaneously, at the individual level with similar
optimal 𝑑-values across PAs. This method for combining several
PAs into a single combined one, though, is not unique, and could
further be improved by adding weights to the different PAs set
as hyperparameters by experts.

4 EXPERIMENTAL EVALUATION
This section reports the effectiveness of ParDS regarding sep-
arability in Subsection 4.1, comparing sampling strategies and
fairness definitions in Subsection 4.2 and benchmarking ParDS
with existing fairness-correcting methods, in Subsection 4.3.

4.1 Separability
To verify the effect of separability on ParDS’ effectiveness, we
created 11 simple datasets, consisting of one continuous feature
𝑓 and one binary label 𝑙 . These datasets were created using the
scikit-learn’s [11] make_classification function, with varying lev-
els of class separability 𝑠 , ranging from 0 (completely mixed up)
to 2 (over 95% probability of complete separation). What this
function does is sample feature values from normal distributions
centered at 𝑠 and −𝑠 for the two classes, respectively. A PA was
then randomly added, ensuring a fixed 50/50 proportion of 𝐹 vs
𝑈 datapoints, with PRs of 0.9 and 0.1 for 𝐹 and𝑈 , respectively.

As may be seen in Figure 4a, the greater separability data has,
the less effective our correcting method becomes (represented
by a near-flat demographic parity ratio curve as a function of 𝑑).
However, adding random noise to a linearly separable dataset (ef-
fectively rendering it inseparable again) restores the effectiveness
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Figure 4: Correction effectiveness by separability. (a):
On close-to-linearly separable data, the method becomes
highly inefficient, or even stops working at all. (b): Intro-
ducing random noise into a separable dataset lets correc-
tion become effective again.

of ParDS. To test this, we created a linearly separable dataset
with 𝑠 = 2, and gradually introduced noise through parameter 𝑛
taking values from 0 to 1, the proportion of randomly-assigned la-
bels. As shown in Figure 4b, this intervention can render fairness
correction effective again, even with a small amount of added
noise.

4.2 Method Validation
We tested ParDS on three datasets commonly used in ML fairness
research literature: Adult Income (Income) [12], COMPAS [26] and
German Credit [12].

For every dataset, we performed the following experiment 50
times, and then averaged the results for robustness:

(1) Random train/test split the data with 90/10 proportion.
(2) For Proxy Fairness checking, make two copies of the test

set 𝑇 and intervene PA as either𝑈 or 𝐹 , obtaining 𝑇PA=𝑈
and 𝑇PA=𝐹 , respectively.

(3) For each sampling function, obtain 11 training sets, corre-
sponding to 𝑑 ∈ {1, 0.8, 0.6, . . . ,−1}.

(4) For each of these training sets, fit a classifier.
(5) For every model, get predictions for 𝑇 , 𝑇PA=𝑈 and 𝑇PA=𝐹 .
(6) Compute metrics for accuracy, DPR, EOR and PFR, as well

as the model coefficients.
We then proceeded to analyse the resulting fairness metrics, and
compared our results with PS.

4.2.1 Results. As expected, fairness correction has an impact
over a classifier’s predictive performance. Figure 5 shows the
fairness-accuracy trade-off for the different sampling strategies
for the three fairness ratios over Income. As may be seen, the
trade-off is similar across the different sampling strategies, and
the loss in predictive performance for optimal fairness will be
definition dependant.
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Figure 5: Fairness-accuracy trade-off for DPR, EOR and PFR on Income.

Table 1 shows diverse performance metrics for ParDS using
the different sampling strategies to correct γ𝑠𝑟 on Income. The
presented means and confidence intervals (CIs) result from 100
independent train/test splits, then using each sampling strategy
with the optimal 𝑑-value for each estimated through Bayesian op-
timisation. As may be seen, there is a big difference in computing
time across strategies, with SMOTE being over 10 times slower
than Under. On the other hand, SMOTE produced the best scores
for most performance metrics. Optimal fairness correction was
achieved within the CIs for all methods, with roughly the same
accuracy loss trade-off. Interestingly, running Under before train-
ing the classifier was 35% faster than just training the classifier
over the full dataset. This would provide an additional advantage
for Under-corrected training sets when learning models from
large-scale datasets.

4.3 Comparison with Other Methods
An intrinsic advantage of ParDS is that it can optimise a clas-
sifier with respect to different group fairness definitions. Three
definitions: γ𝑠𝑟 [5], discrimination (disc) [21] and equalised odds
(eOdds) [19] were used for our comparisons.

Tables 2 and 3 compare ParDS with a variety of preprocess-
ing [4, 8, 19, 20, 24, 29], in-processing [1, 5, 30–32] and post-
processing [18] fairness-correcting methods.

Since four different classification algorithms were used on the
papers we compared with—AdaBoost (AB), decision trees (DT),
Gaussian naïve Bayes (GNB) and logistic regression (LR)—we
present ParDS’ results using all three of them. We optimised our
classifiers to compare with the state-of-the-art methods, hence
three of our presented methods are optimised for DPR and two
are optimised for eOdds. We evaluated our metrics using the
same classification algorithms as the ones used in the papers we
compare with. The objective functions to optimise were |1−DPR|
and |1− eOdds | for DPR and eOdds, respectively, with 0 being the
best value the objective function may take in both cases.

For every tested 𝑑-value we averaged the resulting DPR of 50
random 90/10 train/test splits, finding optimal𝑑-values of {0.8338,
-0.1803, -1.1528, -0.6083} for AB, DT, GNB and LR, respectively.
All of the classifiers were trained using the default scikit-learn
hyper-parameter values; using these parameter values, we ran
ParDS 10 times and averaged the resulting metrics. The fairness
and accuracy metrics for the compared methods refer to the
best reported values in [5, 19, 20, 29, 32]. Likewise, for methods
evaluated on more than one classifier, we present the best one.

Our eOdds-optimised AdaBoost classifier produced the best
overall accuracy (86%), while showing an eOdds value within 3%
of the best performingmethod [24]. Regarding ourDPR optimised
classifiers, although LR performed the best overall, both ParDS’

DT and GNB performed better than the other methods’ DTs and
GNBs, respectively. Interestingly, ParDS’ LR produced the fairest
classifiers with respect to definitions γ𝑠𝑟 and disc, even though
they were actually optimised for DPR. While the accuracy of
DPR-optimised ParDS LR was not the best (83%), it came within
1% of the best performing classifiers (ParDS’ DT, Kamiran and
Calders [20] and Zafar et al. [30], with an accuracy of 84%).

5 CONCLUSION
In this paper we define ParDS, a parametrised fairness optimi-
sation method agnostic to both fairness definitions and classifi-
cation models. Correcting through training set resampling, we
have shown that ParDS produces fairness-optimal predictions
with a small loss in predictive power. When compared with the
existing methods, in most cases ParDS produces the best fairness
performance.

In future work we intend to further improve our data resam-
pling methods, in order to optimise for different fairness defini-
tions at once. Although ParDS shows a relatively low impact on
prediction performance and its main objective is to estimate the
optimal amount of correction with respect to fairness, we would
like to find a way to consider predictive performance as well,
either in the form of a restriction—e.g. a maximum loss in accu-
racy or a minimum level of fairness—or by setting an acceptable
trade-off rate between both metrics.
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