O

proceedings

Scalable Linear Algebra Programming for Big Data Analysis

Leonidas Fegaras
University of Texas at Arlington
Arlington, Texas
fegaras@cse.uta.edu

ABSTRACT

Arrays are very important data structures for many data-centric
and scientific applications. One of the most effective represen-
tations of large dense arrays in a distributed setting is a block
array, such as a tiled matrix, which is a distributed collection of
non-overlapping dense array blocks. Although there are many
linear algebra libraries for machine learning that support dis-
tributed block arrays and provide an optimal implementation for
many array operations, these libraries do not support ad-hoc ar-
ray programming and customized storage structures. Imperative
programs with loops and array indexing, on the other hand, are
more powerful as they allow arbitrary array computations but
are hard to parallelize and convert to distributed programs.

Our goal is to provide an SQL-like abstraction for data-parallel
distributed array computations that is expressive enough to cap-
ture a large class of array computations and can be compiled to
efficient data-parallel distributed code. Our abstraction is a mono-
lithic array construction in the form of an array comprehension
that is as expressive as SQL by supporting a group-by syntax
that allows us to capture many array computations in declarative
form. We present rules for translating array comprehensions on
block arrays to data-parallel distributed code that can run on
Apache Spark. We describe a comprehensive set of effective op-
timizations that can produce very efficient translations, such as
the optimal block matrix multiplication algorithm, even though
they are oblivious to linear algebra operations. Finally, we justify
our claims by evaluating the performance of our generated code
on Apache Spark relative to Spark MLIib.

1 INTRODUCTION

Much of the data used in data-centric applications come in the
form of arrays, such as vectors, matrices, and tensors. In the early
days of numerical computing, most of the array programming
was done in an imperative loop-based language, such as Fortran
or C, using array indexing to access and update array elements
incrementally, one at a time. Although loop-based programs are
efficient when they run on a single processor, they are hard to
parallelize and reason about. Currently, most array program-
ming is done using vectorization languages, such as MATLAB, R,
and NumPy, that allow programmers to write high-level array
code that closely resembles mathematical formulas. These lan-
guages provide highly tuned array operations that are applied to
whole arrays instead of individual elements, thus making loops
inessential. Moreover, they hide the implementation details and
optimize performance by choosing an implementation (a kernel)
for an array operation from a variety of build-in array storages
and algorithms. Internally, these languages rely on numerical
libraries, such as BLAS [9], for efficient linear algebra computa-
tions. These libraries, which are also an integral part of many

© 2021 Copyright held by the owner/author(s). Published in Proceedings of the
24th International Conference on Extending Database Technology (EDBT), March
23-26, 2021, ISBN 978-3-89318-084-4 on OpenProceedings.org.

Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

Series ISSN: 2367-2005

313

machine learning (ML) sytems, such as TensorFlow [1], PyTorch,
and MLIib [5], implement basic array operations efficiently using
multicore parallelism and GPU acceleration. Many array oper-
ations provided by the vectorization languages are overloaded
to work on a variety of array storage structures, thus offering
an implementation-independent view to the programmer. Given
that there are numerous storage structures for arrays, such as
dense, tiled, and compressed sparse matrices, each library op-
eration must have numerous implementations, especially those
operations that operate on multiple arrays, such as matrix mul-
tiplication. As a result, this code specialization based on array
implementation is hard to extend with user-defined storage struc-
tures and algorithms. This is particularly true for distributed
arrays, which have to be partitioned into blocks and distributed
across compute nodes. In that case, not only there are numerous
ways to implement these blocks as arrays, but there are also nu-
merous ways to partition the arrays into blocks. A better solution
would have been to express array computations in a high-level
declarative language for array computations that is expressive
enough to capture most array programs and is supported by
a translation scheme that separates the specification from the
implementation and generates high-quality code.

This problem of sacrificing expressiveness and extensibility for
efficiency incurred from the library approach is exacerbated by
the need to process large arrays that do not fit in memory. Given
that the accuracy of the data analysis and ML models depends
on the data size, current data-centric applications must analyze
enormous amounts of array data using complex mathematical
data processing methods. In recent years, new frameworks in
distributed Big Data analytics have become essential tools for
large-scale machine learning and scientific discoveries. These
systems, which are also known as Data-Intensive Scalable Com-
puting (DISC) systems, have revolutionized our ability to analyze
Big Data. Unlike High-Performance Computing (HPC) systems,
which are mainly designed for shared-memory architectures,
DISC systems are distributed data-parallel systems on clusters
of shared-nothing computers connected through a high-speed
network. Compared to low-level distributed-memory communi-
cation paradigms, such as MPI, DISC systems automate many
aspects of distributed computing, such as fault tolerance, which
is important for long-running Big Data analysis on thousands of
computers, scalability, data partitioning and distribution, and task
scheduling and management. One of the earliest DISC systems is
Map-Reduce [8], which was introduced by Google and later be-
came popular as an open-source software with Apache Hadoop.
Recent systems, such as Apache Spark [4] and Apache Flink [3],
go beyond Map-Reduce by maintaining dataset partitions in the
memory of the compute nodes. All these systems use data shuf-
fling to exchange data among compute nodes, which takes place
implicitly between the map and reduce stages in Map-Reduce
and during group-bys and joins in Spark and Flink. Essentially,
all data exchanges across compute nodes are done in a controlled
way using special operations, which implement data shuffling by

10.5441/002/edbt.2021.28

https://OpenProceedings.org/
http://dx.doi.org/10.5441/002/edbt.2021.28

distributing data based on some key, so that data associated with
the same key are processed together by the same compute node.

The goal of this paper is to provide a well-formed abstraction
for data-parallel distributed array computations “without regret”,
that is, an abstraction that is declarative so that we can reason
about it, is expressive enough to capture a large class of array
computations, and can be compiled to efficient data-parallel dis-
tributed code. Our main construct is the array comprehension,
which is a monolithic array construction in the form of a list
comprehension. List comprehensions are found in many mod-
ern programming languages, such as Python, Scala, and Haskell.
Unlike regular list comprehensions though, our array comprehen-
sions are as expressive as SQL queries by supporting a group-by
syntax that allows us to capture many array computations in
declarative form without using array indexing which is hard to
reason about. An array comprehension can access and correlate
multiple arrays by traversing their elements one-by-one and can
construct a new array in one shot by mapping array indices to
values, which are derived from the elements of the input arrays.
Array comprehensions can capture many linear algebra oper-
ations, including inner and outer products of vectors, matrix
addition and multiplication, matrix rotation and transpose, array
slicing and concatenation. More complex array operations, such
as matrix inverse and LU decomposition, can be coded using
array comprehensions inside loops.

1.1 Highlights of our Approach

This paper presents a generic and customizable system that trans-
lates abstract array programs to high-performance distributed
code that can run on current DISC platforms. When designing
storage structures for arrays in a distributed setting, there are
many choices to consider, each exhibiting different performance
characteristics for various array computations. One example
of such a storage method is organizing contiguous array ele-
ments into dense non-overlapping blocks of fixed capacity. Our
framework uses a two-layer approach where array programs
are expressed in a powerful high-level syntax on abstract arrays,
while these abstract arrays are mapped to customized storage
structures based on user-defined type mappings, thus separating
specification from implementation.

An abstract array with dimensionality i in our framework
has type arrayi[T], for an arbitrary type T. The most common
abstract arrays are vector[T], equal to array1[T], and matrix[T],
equal to array2[T]. An abstract array is represented as an associ-
ation list of key-value pairs in which the key contains the array
indices. This array representation is also known as a sparse rep-
resentation or a coordinate format. For example, a matrix M of
type matrix[Double] is represented as an association list of type
List[((Int,Int),Double)] so that an element M;; is represented by
the key-value pair ((i, j), M;;), which associates the indices i
and j with the value M;;. This association list can be sparse (i.e.,
some elements may be missing) if the array is sparse. A concrete
implementation of an array (i.e., its storage structure) is specified
by two customized functions: the sparsifier, which converts the
storage structure to an association list, and the builder, which
constructs the storage structure from the association list. These
two functions, which are inverse of each other, are used by our
translator to transform any operation f(x1,...,x,) on abstract
arrays x; to an operation on their concrete storage structures
¢; by up-coercing the storages c¢; using the sparsifiers s; and
down-coercing the abstract result using the builder b, that is,

314

Array Comprehension Spark Code

V = M.map { case ((1,)),A)

V= Llr/m) [(hm) & M, = {val B = Array.fill(N)(0.0);

group by i] for {i < (0 until N).par;
j< OuntilN}
o) B(i) += AGi);
LMy LV (.8) } }
I .reduceByKey(addVectors)
M T v compute nodes

| M_L— —
HEN AERREERET
RN [= [=
(1] VI ottt
111 < 5 — oo >
(] el B el I M

network | { 1

M: RDD[((Int,Int),Matrix[Double])]
V: RDD[(Int,Vector[Double])]

M: List[((Int,Int),Double)]
V: List[(Int,Double)]

Figure 1: Code generation for V; = 3 ; M;;

b(f(s1(c1),...,sn(cn))). This layered approach introduces levels
of indirection and generates superfluous intermediate structures
(the abstract arrays x;) that need to be removed. In our frame-
work, this is accomplished by fusing these functions into one
function that represents the concrete code so that the resulting
program builds the output structures directly and works on the
storage structures ¢; without creating the association lists x;.

Our language for expressing abstract array programs uses a
monolithic array construction in the form of an array comprehen-
sion that is as expressive as SQL by supporting a group-by syntax
that allows us to capture many array computations in declarative
form. Comprehensions with a group-by syntax were first intro-
duced by Wadler and Peyton Jones [24] and have been used as
the formal calculus for the DISC query languages MRQL [10] and
DIQL [12]. For example, the following comprehension returns
the number of employees in each department:

[(d.name,count(e)) | e « Employees, d « Departments,
e.dno == d.dnumber, group by d.name].

The formal semantics of comprehensions, the translation of com-
prehensions to an algebra, and a query optimization framework
are described in our earlier work [10, 12]. Array comprehensions
are actually list comprehensions in which the array storages used
in a comprehension are implicitly converted to association lists
by array sparsifiers and the list returned by the comprehension
is converted to an array storage by an array builder.

Consider for example the following array comprehension that
constructs a vector V of size n from a matrix M of size n X m such
that V; = 3 i Mij, where both the matrix M and the resulting
vector V are stored in memory:

V = vector(n)[(i, +/m) | ((i,j),m) « M, group by i], (1

which constructs the entire array V in one shot. The matrix M
of type matrix[Double] is implicitly converted to an association
list of type List[((Int,Int),Double)]. The generator ((i,j),m) < M
traverses M one element at a time and each time the traversed
element is pattern-matched with the pattern ((i,j),m), which binds
the pattern variables i, j, and m to the the corresponding compo-
nents of this element. A group-by operation in a comprehension
lifts each pattern variable defined before the group-by (except
the group-by keys) from some type ¢ to a bag of ¢, indicating that
each such variable must now contain all the values associated
with the same group-by key value. Consequently, after we group

by i, the pattern variables that are not used in the group-by key,
j and m, are now lifted to lists that contain all their values asso-
ciated with a certain group-by key i. The term +/m adds up all
the bindings of the variable m associated with the key i. That is,
it calculates)’ ; M;;. Finally, the array builder, vector(n)(L), con-
verts the association list L of type List[(Int,Double)] to a vector
of type vector[Double] of size n.

In Query (1), both matrix M and the query result V are stored
in memory. However, in our framework, the storage of these
arrays can be customized by using a different sparsifier for M
and a different builder for the result. More specifically, we want
to translate array comprehensions to efficient distributed pro-
grams over block arrays, which are distributed bags of dense
array chunks. In Spark [4], we can implement a tiled matrix
as a distributed collection (an RDD) of fix-sized square tiles
of type RDD[((Int,Int),Array[Double])], where each tile ((i,j),A)
has coordinates i and j and values stored in the dense matrix
A, which has a fixed size N=N, for some constant N. Similarly,
we can implement the query result V as a block vector of type
RDD[(Int,Array[Double])], where each block (i,B) has a coordi-
nate i and values stored in the vector B of size N. Then, Query (1)
can be rewritten as:

V = tiled[(i, +/m) | ((i,j),m) « M, group by i]. @)

For this query, the implicit sparsifier that converts a tiled matrix
M of type RDD[((Int,Int),Array[Double])] to an association list
of type List[((Int,Int),Double)] is:

[CCiixN+i, jj=N+j), A(i,j))
| ((iij)),A) « M, i « O until N, j « 0 until N],

where the index variable i in ‘i « 0 until N’ iterates from 0 to
N—1. Here, ii and jj are tile coordinates, and i and j are indices
within a tile. That is, for each tile A with coordinates ii and jj
read from the tiled matrix M, this list comprehension constructs
N * N elements from the data stored in A, so that each element
has row coordinate ii*N+i, column coordinate jj*N+j, and value
A(i,j). On the other hand, the builder tiled(L), which constructs a
block array of type RDD[(Int,Array[Double])] from the list L of
type List[(Int,Double)], is:

rdd[(i/N, vector(N)(w))
| (i,v) « L, letw = (i%N, v), group by i/N],

where the builder rdd builds an RDD from a list. That is, this
comprehension groups the elements (i,v) of L by i/N (the tile
coordinate) so that all N pairs (i,v) with the same i/N go into
the same tile. After the group-by, the value of w is lifted to a
list that contains all the values (i%N,v) that belong to the same
tile at location i/N. The builder vector(N)(w), used in Query (1),
converts the list w to a vector, which is an array block of size N.

Like array queries, sparsifiers and builders are expressed as
comprehensions, but unlike array queries, they use efficient ar-
ray indexing. This implicit coercion from stored arrays to lists
and the building of stored arrays from the results of a compre-
hension introduce levels of indirection and generate superfluous
intermediate structures that need to be removed. This is done by
unnesting nested comprehensions into flat comprehensions. As
we will show in this paper, after some simple transformations,
Query (2) is optimized to the Spark code shown on the right of
Figure 1. That is, from every tile A in M with tile coordinates |
and J, a new vector block B with a coordinate | is constructed.
The tile processing, which takes place at each compute node, is

315

parallelized using the the Scala’s par method [20]. Finally, vec-
tor blocks with the same coordinate are reduced pairwise using
vector addition, addVectors.

In this paper, we present a small set of generic rules for trans-
lating array comprehensions to efficient Spark RDD programs
that operate on block arrays. These rules are not based on spe-
cific array operations but can apply to many array processing
programs that can be expressed as array comprehensions. Matrix
multiplication, for example, is translated to an optimal block ma-
trix multiplication algorithm by one generic rule that recognizes
a certain class of group-by-joins (joins between two datasets fol-
lowed by a group-by and an aggregation), and translates them to
a special block group-by-join algorithm. Our system, called SAC
(Scalable Array Comprehensions), has been implemented using
Scala’s compile-time reflection and macros. It translates array
comprehensions to Scala code that calls Spark RDD operations
whose functional arguments use the Scala’s Parallel Collections
library for multicore parallelism [20].

In an earlier work [13], we have presented a framework, called
DIABLO (a Data-Intensive Array-Based Loop Optimizer), for
translating array-based loops to array comprehensions, which
in turn are translated to Spark programs expressed in the Spark
Core APIL The DIABLO input language resembles the syntax
of some loop-based imperative languages, such as C and Java.
DIABLO can translate any array-based loop expressed in this
loop-based language to an equivalent Spark program as long
as this loop satisfies some simple syntactic restrictions, which
are more permissive than the recurrence restrictions imposed
by many current systems. Unlike SAC, DIABLO generates Spark
programs that operate on arrays in the coordinate format. In a
distributed setting, arrays stored in the coordinate format are
known to be less efficient than block arrays because 1) they oc-
cupy more space and therefore require more data shuffling to
evaluate complex array operations, and 2) they are less amenable
to multicore parallelism at each compute node since they store
the array elements in random order. Furthermore, the focus of
DIABLO is in the translation of imperative programs to array
comprehensions, while the focus of SAC is in the translation
of array comprehensions to efficient code on customizable ar-
ray storages, with an emphasis on block arrays. That is, SAC
supplements DIABLO and can be used as a drop-in back-end
replacement for DIABLO to make it able to work on block arrays.
Finally, the work reported in this paper generalizes our earlier
work on extending MRQL with array-based computations [11].
It extends the MRQL query optimizer with a GroupByJoin physi-
cal operator that generalizes the SUMMA parallel algorithm for
matrix multiplication [14], an idea also used in Section 5.4 in the
context of block arrays. However, unlike our current framework,
this system too is based on arrays stored in the coordinate format.

The contributions of this paper are summarized as follows:

e We introduce a novel comprehension syntax for array
computations that can capture many array computations
in declarative form and is independent of array storage.

e We describe a translation scheme that translates array
comprehensions to efficient imperative programs with
memory effects (Sections 2 and 3).

e We extend this translation scheme to generate efficient
Spark code from array comprehensions (Section 4).

e We introduce special type transformations to translate
comprehensions on block arrays to efficient Spark code
that reduces the amount of data shuffling (Section 5).

Expression:
e == J[elq] comprehension
| &fe reduction using @
| oler,....en] array indexing n > 1
[... other expression
Qualifiers:
q == q1,---,qn nx0
Qualifier:
q = pee generator
| letp=e local declaration
| e filtering
| groupbyp[:e] group-by
Pattern:
p u= w0 pattern variable
| (p1,---pn) tuplen > 0

Figure 2: Language syntax

[e1 | p « ez, q] = ez.flatMap(Ap.[e1 | q]) (4)
[ei|letp=ez,q]l= letp=eyin[e; | q] (5)
[e1 | e2,] = if (e2) then [e; |] else Nil (6)

[el 1= [e] (7)

Figure 3: Desugaring rules

e We evaluate the performance of our system relative to
Spark’s MLIib.linalg library (Section 6). Based on these
results, SAC is up to 6 times faster than MLIib for matrix
multiplication and up to 3 times faster than MLIib for
matrix factorization.

2 SYNTAX AND SEMANTICS OF ARRAY
COMPREHENSIONS

Figure 2 describes the syntax of our language and Figure 3 gives
the desugaring rules, which are based on standard methods for
translating list comprehensions [23]. The meaning, desugaring
rules, and code generation for the group-by syntax are given in
Section 3.

Flattening nested comprehensions that do not have a group-by
qualifier is done using the following rule:

[enlqr, p<—lezlgs] qz]

= [e1 191, g3, letp = ez, g2] ®)

for any sequence of qualifiers g1, g2, and g3. It may require re-
naming the variables in [ey | g3] before we apply this rule to
prevent variable capture.

As explained in Section 1.1, abstract arrays in our framework
are represented as association lists that uniquely map array in-
dices to values. These abstract representations are mapped to
concrete storage structures with the help of a pair of customized
functions, a sparsifier and a builder. Then, array comprehensions
on abstract arrays are translated to efficient concrete programs
on storage structures based on these type mappings. In this and
the following section, we describe this program translation in
more detail using one specific type mapping that stores a ma-
trix in a flat vector in row-major order. Although this storage

316

structure is not a distributed tiled array, which is the focus of
this paper, this example is important for two reasons: First, it
illustrates our program translation process in detail using a sim-
pler storage. Second, it is useful for translating comprehensions
on block arrays to Spark code (described in Sections 4 and 5)
because it shows how the code for tile operations is generated,
given that a tile is a matrix.

Consider a matrix M of type Matrix[T] stored in row-major
order as a triple (n,m,V) of type (Int,Int,Array[T]), where n and
m are the matrix dimensions and V is the vector that contains
the matrix elements in row-major order. The following sparsifier
converts the storage S of type (Int,Int,Array[T]) to the abstract
representation of the matrix M, which is of type List[((Int,Int),T)]:

def sparsify[T] (S: (Int,Int,Array[T])): List[((Int,Int),T)]
= [((i,j),A(i*n+j)) | let (n,m,A) =S, i < 0 until n, j « 0 until m],

where A(i) is array indexing in Scala. The builder matrix(n,m) L
takes two groups of parameters. The n and m parameters spec-
ify the matrix dimensions, while L is the association list to be
converted to a flat vector that contains the matrix values in row-
major order:

def matrix[T] (n: Int, m: Int)
(L: List[((Int,Int),T)]): (Int,Int,Array[T])
={ val V = Array.of Dim[T](n+m);
[V(i=n+j) = v | ((ij)v) < L, i20, i<n, j>0, j<m];
(hmV) },

where Array.ofDim[T](n) creates a new array of size nand V(i) = a
is an assignment that updates V(i). The sparsifier function is al-
ways named ‘sparsify’ because, as we will see next, it is implicitly
embedded in the code by the compiler by looking at the code type,
while the builder must have a unique name or type signature
since all builders transform association lists. Nevertheless, the
builder too can be inferred by the compiler in certain assignments,
such as in the following example. In the following declaration:

var M: matrix[Double]
= matrix(n,m)[((i,j),random()) | i « 0 until n, j « 0 until m];

the builder matrix(n,m) is required because the M declaration
specifies the abstract type, matrix[Double], but not the storage.
However, in the following assignment:

M = [((,i),m+1) | ((i,j),m) & M, m>10];

the builder can be inferred to be matrix(n,m), since the compiler
can infer the storage type of M.

As a running example to illustrate code generation, consider
the addition of two matrices M and N of size n X m, expressed as
follows using array comprehensions:

matrix(n,m)[((i,j),a+b) | ((i,j),a) « M, ((ii,jj),b) « N,
i ==i,jj==j1

This query can also be expressed as:

matrix(n,m)[((i,)),a+N[i,j]) | ((ij).a) <M],

which is translated to Query (8). Basically, an array indexing
Vlei,...,en] in a comprehension is transformed by adding the
qualifiers ((k1,...,kn) ko) <« V, ki er,....kn == ey to
the comprehension, where ko, k1, . . ., k; are fresh variables, and
by replacing Vey,...,e,] with ko. Without such translation,
array indexing would not be able to map to operations on the
underlying array storage.

Given a generator p < e in a comprehension, the compiler
will infer the type of e using standard type inference. Then, it will

®

search all defined sparsifiers to find one, if exists, that applies to
the type of e, and will embed this sparsifier by replacing e with
sparsify(e). For Query (8), the compiler will infer the storage
type of M and N to be (Int,Int,Array[Float]) and then will embed
the right sparsifiers to convert them to association lists, which
for these matrices is the sparsify function defined earlier. Then, it
will inline the code of the sparsifiers and builder and will optimize
the resulting program. This can be done effectively when these
functions are expressed as comprehensions. By expressing these
functions as comprehensions, the optimizer can fuse them with
the array comprehension of the query, resulting to a comprehen-
sion that traverses the array storage directly, without creating the
intermediate lists. Furthermore, unlike array comprehensions,
these functions can and must use array indexing so that the fused
comprehension results to efficient array operations.

In addition to flattening nested comprehensions using Rule (3),
the only optimizations needed are those related to index traver-
sals. More specifically, if two index generators i < 0 until n and
j < 0 until m are related with i==j, then they are fused to one
generator and a let-binding: i «~ 0 until min(n,m), let j = i.

For Query (8), if for simplicity, the inequalities in the matrix(n,m)
builder are ignored, we have:

matrix(n,m)[((i,j),a+b) | ((i,j),a) « sparsify(M),
((ii,jj),b) « sparsify(N),
ii==ijj==j]
(if we inline the array builder without the inequalities)
={ val V = Array.ofDim[T](n+m);
[V(i*n+j) = v
| ((ij)v) « [((Q,j)a+b) | ((i,j).a) « sparsify(M),
((ii,jj),b) « sparsify(N),
ii==0ji==j1k
(nmyV) }
(if we unnest the comprehension using Rule (3))
={ val V = Array.ofDim[T](n+m);
[V(i*n+j) =v
| (darb) | (()a) = sparsify(M)
((ii,jj),b) « sparsify(N),
i == i, ==
(nm\V) }
(if we inline the sparsifiers and rename their variables)
={ val V = Array.ofDim[T](n+m);
[V(isn+j) =v
| ()arb) | (j)2) « [([151).AGTn1+1T)
| let (n1,m1,A) = M,
i1 < 0 until n1,
j1 < 0 until m1],
((ii,jj),b) « [((i2,j2),B(i2:n2+j2))
| let (h2,m2,B) = N,
i2 « 0 until n2,
j2 < 0 until m2],
i == i,jj ==}
(n,m,V) }
(if we unnest the comprehension using Rule (3))
={ val V = Array.of Dim[T](n+m);
[V(i*n+j) = v
| let (n1,m1,A) = M,
i1 < 0 until n1,j1 « 0 until m1,
let (n2,m2,B) = N,

317

i2 « 0 until n2, j2 « 0 until m2,

i2 == i1, j2 == j1,
let ((i,j),v) = ((i1,j1),A>i1sn1+j1)+B(i2%n2+j2)) 1;
(n,m,V) }

(if we merge the array index bounds)
={ val V = Array.of Dim[T](n+m);
[V(i*n+j) = A(i1sn1+j1)+B(i1+n2+j1))
| let (n1,m1,A) = M, let (n2,m2,B) = N,
i1 « 0 until min(n1,n2), j1 « 0 until min(m1,m2)];
(n,m,V) }

Given that comprehensions over arrays are translated to array in-
dex traversals of type scala.collection.immutable.Range in Scala,
to parallelize the code, the only transformation needed is to
convert the outer index traversal to a parallel traversal of type
scala.collection.parallel.immutable.ParRange. This is done by ap-
plying par, such as i1 < (0 until min(n1,n2)).par in our example.

Comprehensions can also be used along with total aggrega-
tions, such as for checking whether a vector V is sorted:

&&[[v<=w]|(i,v) « V,(jw) <V, j==i+1],

which checks if all consecutive elements of V (i.e., V; and Vj41)
are ordered. The builder of @ /e is:

{varb=1g;[b=(b®Vv)|vee];b},

where 1g is the zero value of the monoid @. Similar to the matrix
sparsifier, the vector sparsifier is:

def sparsify[T] (V: Array[T]): List[(Int,T)]
=[(i,V(i)) | i « 0 until V.length].

If we embed the sparsifiers, unfold the builder code, and unnest
the list comprehensions, the array comprehension becomes:

{ var b = true;
[b=(b&& (V(i) <= V(j))) | i « 0 until V.length,
j < O until V.length, j == i+1];
b},

which is further optimized to:

{ var b = true;
[b=(b&& (V(i) <= V(i+1))) | i « 0 until V.length—1];
b},

given that min(V.length,V.length—1) = V.length—1.

3 COMPREHENSIONS WITH A GROUP-BY

Consider the product of two matrices M and N with dimensions
n x I and I X m, respectively, which is equal to a matrix C so that
Cij = 2k Mij * Ni;. Using our array comprehensions enhanced
with a group-by syntax, matrix multiplication can be expressed
as follows:

matrix(n,m)[((i,j),+/v) | ((i,k),a) « M, ((kk,j),b) « N,
kk ==k, let v = axb,)
group by (ij) I
This comprehension retrieves the values M;; and Ny ; and sets
0 = Mjj * Nij. After we group the values by the matrix indices i
and j, the variable v is lifted to a bag of numerical values Mg =Ny ;,
for all k. Hence, the aggregation +/v sums up all the values in the
bag v, deriving 3 Mji * Nk for the ij element of the resulting
matrix.
Another example of a group-by comprehension is matrix
smoothing for a matrix M, which is a matrix C such that C;; =

% Yi-1<I<i+1 % j-1<j<j+1 My That is, Cjj is the average value
in the neighborhood of M;;:

matrix(n,m)[((ii,jj),(+/a)/a.length)
| ((ij).a) <M,
ii e (i=1) to (i+1), jj « (j—1) to (j+1),
ii>=0,ii<n,jj>=0,jj<m,
group by (iijj)],
which also takes care of the boundary cases.

Given a pattern p that consists of bound pattern variables,
the qualifier group by p in [e | ¢1, group by p, g2] groups
every pattern variable in g7 (except the variables in p) by the
group-by key p into a list that contains all the values of this
variable associated with this group-by key. Furthermore, the
qualifier group by p : e is syntactic sugar for the qualifiers
letp = e, group by p. Group-by qualifiers may appear in mul-
tiple places in a comprehension. For all these cases, only the
pattern variables that precede the group-by qualifier in the same
comprehension must be lifted to lists, and if multiple group-by
qualifiers exist, these variables will have to be lifted multiple
times to nested lists.

Group-by qualifiers are translated to groupBy operations be-
fore a comprehension is translated by the rules in Figure 2. Given
a list s of type List[(K, V)], the operation groupBy(s) groups
the elements of s by their first component (the group-by key)
and returns an association list of type Map|[K, List[V]], which is
implemented as a hash table:

def groupBy[K,V] (s: List[(K,V)]): Map[K,List[V]]
={ val m = Map[K,List[V]();

[m(k) = if (m.contains(k)) m(k):+v else List(v) (10)
[(kv) «s];
m }.

Leto = (vy,...,0,) be the pattern variables in the sequence

of qualifiers g7 that are used in the rest of the comprehension
[e | g2] but do not appear in the group-by pattern p. Then, the
group-by syntax is translated as follows:

[e | q1, group by p, g2]

= [e| (p.s) « groupBy([(p.0) [q1]D. (11)
let o = unzip(s), gz],
where unzip(s) = ([v1 | 0 « s],....[vn | © « s]). That is,

each pattern variable v; in v is lifted to a list that contains all the
values of v; in the current group.

For example, the matrix multiplication in Query (9) has the
following meaning:

matrix(n,m)[((i,j),(+/v)) | ((i,j),s) « groupBy(S), letv =s],
where S is:
[((i,j),v) | ((i,k),a) < M, ((kk,j),b) = N, kk ==k, let v = a«b]

since the only variable lifted is v with v = [v | v <= s], which is
equal to s.

Array comprehensions with a group-by syntax allow more
array operations to be expressed declaratively without having to
use array indexing and loops. They also make comprehensions
equivalent to basic SQL queries. As we will show, although it has
pure semantics, the group-by syntax makes it easier to recognize
certain code patterns in a comprehension and translate them
to efficient code. For example, we will see next that the matrix
multiplication in Query (9) is translated to the following code,

318

which is as efficient as a program hand-coded in an imperative
language:

{ val V = Array.of Dim[T](n«m)(0.0);
[V(i*n+j) += A(i*n+k)=B(k+l+j)
| let (n,LA) = M, let (IlLm,B) = N,
i « O until n, k « 0 until |, j « 0 until m];
(nmV) },

which is equivalent to a triple loop with body Vi; += Aj X By ;.
Consider the general comprehension [e | g1, group by p, g2].

To simplify our translation rules, we rewrite this term to
[z | g1, groupby p,z < [e | g2]] Let V = {o1,...,00}
be the set of variables that are lifted by the group-by but are not
lifted or redefined in gz and let v = (vy, ..., vy,). Recall that these
variables are lifted to lists that contain all the values of these
variables associated with the group-by key p. A lifted variable
may occur any number of times in the rest of the comprehension,
[e]gz] Let wy, ..., wn be the occurrences of the lifted variables
in[e | g2]. A lifted variable w; € V may occurin[e | g2] asa
term that takes one of the following forms:

e ®;/w;, for some monoid ®;, or

e @;/w;.map(g;), for some monoid &®; and a function g;, or

otherwise

o w;, which is equal to +/w;.map(x = List(x)),
where the last case is used when the first two do not match.
All these cases can be generalized to ®; /w;.map(g;), for some
monoid ®; and function g;. Hence, we can represent the term
after group-by as follows:

f(&1/wi.map(g1), ..., ®n/wm.map(gm))
f(®/zip(w).map(g)),

for some term function f, where w = (wy,...,wn), g = g1 X
<X gm,and ® = @1 X - - - X ®p, (a product of monoids'). Then,
based on the Rule (11) and the implementation of groupBy in
definition (10), we have:

[elqz]

[e | qu group by p, 2]

=[z | q1, group by p, z « f(®/zip(w).map(g)) |

={ val M = Map(); (12)
[M(p) = if (M.contains(p)) M(p) ® g(w) else g(w) | g1 |;
[z]p < Mkeys, z < f(M(p))] }

Consider now an array comprehension of the form:

matrix(n,m)[((,). e) | 1, group by (i, j), g2],
Notice that, here, the matrix index (i, j) in the comprehension
head is the group-by key. In the implementation (12) of an array
comprehension with group-by, we can now use arrays of size
n=m, one array for each aggregation, instead of a Map:

matrix(n, m)[((i, j). e) | g1, group by (i,)), g2]
= matrix(n,m)[z | q1, group by (i, j),

2 f(®1/wi.map(gy),.. ., ®n/wn.map(gn))]
={ val Vi = Array fill(n * m)(1g,);

val V,, = Array fill(n + m)(1g,);
[{ Vi(ixn+j)=Vi(i*n+j) &1 g1(01);

Va(ixn+j)=Vp(ixn+j)@ngn(on) } | @1 1
matrix(n,m)[z | ((i, j),_) « V1,

IThat is, the monoid ® with identity 15 = (1gys s
ym) = (xl ®1 Y15, Xm Om ym)

la,,) and (X1, .., Xm) ®

ze— f(Vi(isn+j),....Va(ixn+j)] }

Notice that, the final result is a matrix constructed using the
matrix(n, m) builder, and is made out of the arrays that hold the
aggregation results. This matrix though does not have a group-by
and can be translated using the methods given in Section 2.

For example, the matrix multiplication in Query (9) is trans-
lated as follows:

matrix(n,m)[((i,j),+/v)
| ((i,k),a) « sparsify(M), ((kk,j),a) « sparsify(N),
kk ==k, let v = a=b, group by (i,j)],
(after unfolding the sparsifiers for M and N)
= matrix(n,m)[((i,j),+/v)
| let (n,LA) = M, i « 0 until n, k « 0 until |,
let (Il,m,B) = N, kk « 0 until Il, j « 0 until m,
kk ==k, let v = A(i=n+k)«B(kk=ll+j), group by (i,j)]
(after merging the array index kk with k)
= matrix(n,m)[((i,j),+/v)
| let (n,LA) = M, i « 0 until n, k « 0 until |,
let (ILm,B) = N, j « 0 until m,
let v = A(i*n+k)«B(k=ll+j), group by (i,j)]
(by translating the group-by qualifier)
={val V = Array fill(n,m)(0.0);
[V(i*n+j) = V(i*n+j) + A(i=n+k)«B(k=ll+j)
| let (n,,A) = M, i < 0 until n, k « 0 until |,
let (ILm,B) = N, j « 0 until m J;
matrix(nm)[v | ((i,j).0) « V., v« [((i,j),V(i=n+))) [11}
={val V = Array fill(n,m)(0.0);
[V(i*n+j) = V(i*n+j) + A(i=n+k)«B(k=ll+j)
| let (n,LA) = M, i < 0 until n, k « 0 until |,
let (ILm,B) = N, j « 0 until m J;
matrix(n,m)[((i,j),V(isn+j)) | ((i,j).0) < V 1}
(since the last term is equal to (n,m,V))
={val V = Array fill(n,m)(0.0);
[V(i*n+j) = V(i*n+j) + A(i=n+k)«B(k=ll+j)
| let (n,,A) = M, i « 0 until n, k « 0 until |,
let (ILm,B) = N, j « 0 until m J;
(nmV)}

which is equivalent to the desired efficient loop-based program.

4 TRANSLATING QUERIES ON SPARK

In this section, we translate array comprehensions to distributed
programs that can run on Apache Spark [27]. Distributed datasets
in Spark are represented as Resilient Distributed Datasets (RDDs),
which support a functional API that is very similar to that for
Scala collections. Most RDD operations are second-order, in
which the functional argument is evaluated sequentially while
the operation itself is evaluated in parallel, in a distributed mode.
Unlike Scala collections, Spark does not allow nested RDDs and
will raise a run-time error if the functional parameter of an RDD
operation accesses another RDD. That is, Spark does not support
nested parallelism because it is hard to implement efficiently
in a distributed setting. However, instead of using nested RDD
operations, one may use joins, cogroups, and cross products to
correlate RDDs. Consequently, RDD comprehensions require spe-
cial translation rules to derive joins, instead of nested flatMaps.

The RDD builder, rdd, that converts a List[T] to an RDD[T]
can be implemented by applying the Spark method ‘parallelize’
on this list. However, RDD comprehensions must be translated

319

to RDD operations in a special way to avoid generating nested
operations. A group-by qualifier can be translated to the Spark
groupByKey operation of type RDD[(K,V)]=>RDD[(K,List[V])]
using Equation (11). However, groupByKey is an expensive oper-
ation because it collects the grouped values into a list, shuffles
these lists to the reducers, and finally reduces them by some ag-
gregation. Instead, we want to generate calls to the more efficient
reduceByKey(®), for some monoid &, that reduces the values of
type V using the monoid ®, instead of placing them into a list.
That way, grouped values are partially reduced before they are
shuffled. To generate these reduceByKey calls, we consider the
group-by qualifier in combination with the aggregations in the
comprehension. Recall that, based on the discussion in Section 3
and on Equation (12), any comprehension with a group-by can
be put into the following form:

rdd[e | g1, group by p, 42]
=1dd[z | g1, group by p, z < [e | g2]]
=rdd[z | g1, group by p,
z « f(®1/w1.map(g1), ..., ®m/wm.map(gm)) |,

for some variables w; lifted by group-by, some monoids &;, and
some functions g; and f. Then, the group-by comprehension can
be translated to a reduceByKey operation:

rdd[e | g1, group by p, gz]
=rdd[(p, (g1(w1) gm(wm))) | q1]

.reduceByKey(®) (13)

-;am)) = f(als“"am) }s

.map{ case (p, (ai,..

where ® = @1 X - - - X @y,

The following rule identifies and generates joins between the
RDDs X and Y, instead of nested flatMaps, when vars(e;) C
vars(p1) and vars(ez) C vars(pz), where function ‘vars’ returns
the free variables in a pattern or expression:

rdd[e | q1, p1 < X, @2, p2 < Y, @3, e1 == e2, qa |

=rdd[e | g1, (L (p1.p2)) < Z,92, g3, qa], (14)

where Z = X.map(Ap;. (e1, p1))-join(Y.map(Aps. (ez, p2))).

One way to represent arrays in a distributed setting is to store
them as coordinate arrays, similar to the array representation
used in Section 2. For instance, a matrix can be defined in Spark
as an RDD of type RDD[((Long,Long),Double)], while matrix
multiplication of two RDD matrices A and B, which was defined
in (9), will be translated to the following program using Rules (14)
and (13):

A.map{ case ((i,k),a) = (k,((i,k),a)) }
Jjoin(B.map{ case ((kk,j),b) = (kk,((kk,j),b))})

-map{ case (_,(((i.,k).a),((kk,j),b))) = ((i.j).a+b) }
.reduceByKey(_+_).

Although correct, this Spark program has a high cost: it shuffles
the matrices A and B across the compute nodes to perform the
join, and then it shuffles all the products Ay * By ; to perform
the reduceByKey. Since data shuffling is the main cost factor
for a distributed program, instead of fully sparse matrices in the
coordinate format, we want to use a more compact representation
for matrices by partitioning a matrix into tiles, which are unboxed
arrays of type Array[Double] in which indices are calculated, not
stored. The sparse matrix representation, on the other hand, is
preferable when both dimensions of the matrix are large and the
matrix is very sparse.

5 TRANSLATING BLOCK ARRAY QUERIES

A more effective way of representing an array in a distributed
setting is to encode it as a distributed bag of non-overlapping
blocks, where each block is a fix-sized chunk of the distributed
array. A block is the unit of data distribution. Our goal in this
section is to translate RDD comprehensions over block arrays
to Spark’s distributed data-parallel programs whose functional
parameters will process the blocks very efficiently using multi-
core parallelism and array indexing. Given that data partitioning
is necessary for data-parallel distributed processing, blocks are
a natural way to partition large arrays and at the same time to
minimize space overhead, compared to fully sparse arrays in
coordinate format, in which the indices are stored along with a
matrix element. This small space footprint translates to less data
to shuffle across nodes and faster time to process each partition.
Spark actually uses thread-level parallelism at each compute node
to process the elements of each RDD partition in parallel using
multicore parallelism, but the unit of parallelism for a block array
is the entire block, which is likely to be one block for each com-
pute node. Consequently, in addition to generating distributed
operations from array comprehensions on block arrays, our goal
is to process the data inside blocks using multicore parallelism.

In this paper, we focus on tiled matrices but our work can be
easily extended to handle other block arrays too. We represent a
tiled matrix using the following Scala class:

case class Tiled[T] (rows: Long, cols: Long,
tiles: RDD[((Long,Long),Array[T])]),

where rows is the number of rows, cols is the number of columns,
and tiles is an RDD of fix-sized square tiles, where each tile ((i,j),A)
has coordinates i and j and values stored in the array A. The array
A has a fixed size N+N, for some constant N which is the same
for all tiles. The coordinates i and j of a tile are unique, that is,
tiles is an association list. A matrix element with indices ij is
stored in the tile that has coordinates (i/N, j/N) at the location
(i%N) = N + (j%N) inside the tile. The tile sparsifier is as follows:

def sparsify[T] (S: Tiled[T]): List[((Long,Long),T)]
= [((iixN+i, jj*N+j), a(i*N+j))
| ((iijj),a) « S.tiles,
i « Ountil N, j < 0until N],

where ii and jj are the tile coordinates, and i and j are indices
within a tile. The tiled builder uses the rdd and the array builders:

def tiled[T] (n: Long, m: Long)
(L: List[((Long,Long),T)]): Tiled[T]
= Tiled(n, m, rdd[((i, jj), array(N=N)(w))
| ((ij)v) « L letii = i/N, let jj = j/N,
let w = ((i%N)*N+(j%N), v),
group by (iijj) 1),

where the group-by collects all tile elements into an array. The
group-by comprehension is in an RDD comprehension, which
means that it will be translated to a groupByKey operation in
Spark, which requires data shuffling across the compute nodes.
However, in some cases, this group-by qualifier can be eliminated,
as in the case of a map over a matrix. Such an optimization
is actually a general optimization over comprehensions with
a group-by. A group-by qualifier in a comprehension can be
eliminated if the group-by key is unique, that is, when the group-
by function is injective. Although it is in general undecidable to
prove whether a group-by key is unique, it is easy to do so for

320

special cases, such as when the group-by key consists of array
indices that are bound through an array traversal. For an array
or map A, and the pattern variables v; in g7 or gz, we have:

[e|q1, (k,v) « A, gz, group by k] (15)

= [e|q1, (ko) « A, letv =unzip([v | q2])],

since the generator (k,v) « A for an array or map A indicates
that k is unique. That is, this group-by is removed and every
pattern variable v; in g7 or g is lifted to a bag that contains
all its values in the group. A similar rule exists for a generator
k < e until e, since every value of k is unique.

Although correct, unfolding and normalizing tiled array com-
prehensions based on the tiled sparsifier and builder do not al-
ways result to optimal translations. In the rest of this section, we
present special rules to translate tiled array comprehensions to
efficient Spark programs.

5.1 Queries that Preserve Tiling

Consider the block comprehension without a group-by:
tiled(d)[(key.e) | 7] (16)

where d is the tile dimensions (e.g., (m,n) for a matrix), key is
the tile indices (e.g., (i, j) for a matrix) and e is the associated
value. Let (k_,-, v;) < X; be a generator over a tiled array X; in g,
where k; is a tuple of index variables, such as ((i, j),v) < X for
a tiled matrix X. We say that this tiled comprehension preserves
tiling if key is a tuple w that consists of variables that are defined
in the tuples ki. The rest of the variables in the tuples ki (not in
‘w) must be related to the variables in w with equality predicates
in g, so that the index of the constructed array is unique. For
example, matrix addition and matrix diagonal preserve tiling:

tiled(n,m)[((i,j).a+b) | ((i.j).a) « A, ((ii,jj).b) « B,
i == i, jj == 1
tiled(n)[(ia) | ((ij).2) < A i==j]
A comprehension that preserves tiling is translated to an RDD

comprehension that does not need a group-by to shuffle tiles.
More specifically, the comprehension (16) is translated to:

Tiled(d, rdd[(w, array (N * N)[(w,e) | 2] | qi]), (17)

where the qualifiers in g7 are those from g that do not refer to
the tile values and each tiled generator (k_l vj) « X; has been
modified to be (k_, _v;) « Xj tiles (given the pattern variable v;
bound to an array value, _v; is bound to the entire tile in g7). The
qualifier list g7 is equal to g but each tiled generator (k;, 0;) « X;
in g has been modified to be (k_l v;j) « _v;. For example, matrix
addition:

tiled(n,m)[((i,j),a+b) | ((i,j),a) « A,

(
i == jj ==

(ii,jj),b) « B,

is translated to:
Tiled(n, m, rdd[((i,j), V(_a,_b))
| ((i,j),_a) « Adtiles, ((ii,jj),_b) « B.tiles,

ii==ijj==jl)
where V(_a,_b) is:
array(N«N)[((i.j).a+b) | ((i,j).a) < _a, ((ii,jj).b) « _b,

i == jj ==,

which is a regular array comprehension in which the tiles _a and
_b will be lifted using the following array sparsifier for a tile A:

[(i) AG=N+j)) | i < 0 until N, j « 0 until N .

Based on the translation of RDD and array comprehensions,
matrix addition is translated to the following Spark code:

Tiled(n, m, A.tiles.join(B.tiles)
.map{ case ((ii,jj),(_a,_b)) = ((ii,jj),V(_a,_b)) }).

After optimizations similar to those for matrix addition for regu-
lar matrices, we get the following code for V(_a,_b):

{ val V = Array.of Dim[Double](N=N);
[V((i%N)*N+(j%N)) = _a((i%N)*N+(j%N))
+_b((i%N)*N+(j%N))
| i « (0 until N).par, /« multicore parallelism +/
je Ountil N];
V1

5.2 Queries that do not Preserve Tiling

For those array comprehensions that do not have a group-by and
do not preserve tiling, we need to shuffle only the relevant tiles
to the appropriate reducers. The array indices w in the result of
the tiled comprehension

tiled(d)[(w,) | 7] (18)

may now be arbitrary expressions that depend on the indices of
the tiled generators in gq.

Let f (k) be a term that depends on the array indices k =
ki,..., km from the tiled generators in g. The tiles accessed from
the tiled generators g will have tile coordinates K, where K;
ki/N. Given the tile coordinates K of the input tiles, the tile coor-
dinate returned by f(E) would be equal to f(K1 *N+j1,...,Kn*
N+jm)/N,for j; € [0, N) (the tile dimensions). We define, If(f)
to be the set of all such tile coordinates:

set| f(K1 * N+ j1,....Km * N+ jm)/N |
j1 < OuntilN, ..., j, « OuntilN],

where set(s) returns the distinct values of s. For example, if
f(k) = k+1,then I (K) = set[f(K«N+j)/N | j « Ountil N],
which is equal to the set {K,K + 1} since f(K * N + j)/N =
(K#*N+j+1)/N = K+(j+1)/N.On the other hand, if f (k) = k,
then 7¢(K) = {K}.

Based on this definition, comprehension (18) can be trans-
formed to:

Tiled(d, rdd[(K, V) | g1, K1 « Ty, (K), ..., K T, (K),

group by K1), (19)

where V is:
array[(w,e) | 2, \; Ki == wi(_k+ N +k)/N].

The qualifiers in g7 are those from g that do not refer to the tile val-
ues and each tiled generator (k_l, v;) < X; has been transformed
to the two qualifiers (k_i, _v;) « X;.tilesand let __v; = (k_,-, _0;)
(given the pattern variable v; bound to an array value, _v; is
bound to the entire tile in g1, while __v; is bound to the index-
tile pair). The group-by operation shuffles all the required tiles
to the reducers to compute the resulting tiles. The qualifier list
g2 in V is equal to g but each tiled generator (ki,v;) « X; in q
has been transformed to the two qualifiers (I, _v;) « __v;and
(ki,v;) « _v;. The guards K; == wi(_k * N +k)/N selects only
the proper tiles from all those shuffled by group-by.

321

For example, the following comprehension rotates the rows

so that the first row is moved to the second, the second to third,
etc, and the last to the first:
tiled(n,m)[(((i+1)%m,), v) | ((i,j),v) « X].
The shuffled tiles for a tile in X with coordinates (i,j) have row
coordinates from set[(i*N+_i+1)%m/N | _i <= 0 until N], which
will be evaluated to List(i,i+1) for i <n/N and to List(i,0) for
i = n/N, and column coordinates from List(j). That is, for each tile
with coordinates (i,j) such that i < n/N, we require two tiles: the
tile itself and its row successor with coordinates (i+1,j). Hence,
the row rotation is translated to:

Tiled(n,m,rdd[((K1,K2), V)
| ((i,j),_a) « Xtiles, let __a = ((i,j),_a),
K1 « set[(i*N+_i+1)%m/N | _i < 0 until N],
K2 « List()),
group by (K1,K2) 1),

which is translated to a Spark groupByKey operation. V is:

array(N=N)[(((+1)%m,j),a) | ((i,_j),_a) « __a, ((i,j).2) < _a,
K1 == (_isN+i+1)%m/N, K2 == (_j*N+j)/N 1),

which is translated to an efficient array-based program over the
list of tiles __a.

5.3 Queries with a Group-By

Tile comprehensions with a group-by do not preserve tiling. They
can be translated in a way similar to that for comprehension (18),
but we can do better by using the RDD operation reduceByKey
instead of the RDD operation groupByKey, because a group-by
in a group-by comprehension is often followed by aggregation.
A reduceByKey (@) operation, for some monoid &, is equivalent
to a groupByKey followed by reduction of each group using
@. Although functionally equivalent, reduceByKey is far more
efficient than groupByKey in a distributed setting because it
partially reduces the groups locally before they are shuffled to the
reducers for the final reduction, resulting to less data shuffling.

Before we describe the general translation scheme, we explain
the key idea using the example of matrix multiplication of the
tiled matrices A and B:

tiled(n,m)[((i,j),+/v)) | ((i.k).a) « A, ((kk,j).a) « B,
kk ==k, let v = axb,
group by (i) |.
We want to translate it to the reduceByKey operation:
Tiled(n, m, rdd[((i,j),V(_a,_b))
| ((i,k),_a) « Adtiles, ((kk,j),_a) « B.tiles,
kk ==k].reduceByKey(®)),
where the tile V(_a,_b) is the tile _a multiplied by _b:
array(N=N)[((i,j),+/v)) | ((ik),a) « _a, ((kkj),a) « _b,
kk ==k, let v = axb,
group by (i,j)]
and the monoid & over the tiles _x and _y adds the tiles pairwise:
x@_y = array(N«N)[((i.j)x+y) | ((i.)):x) & _x, ((ii,jj)y) & _y,
ii==1ijj==jl
That is, the rdd comprehension calculates the partial sum of
products of all matching tiles and the reduceByKey calculates

the final sums by adding the tiles pairwise. Then, after translating
the rdd and array comprehensions, we will get:

Tiled(n,m,A.tiles.map{ case ((i,k),_a) = (k,((i,k),_a)) }
Join(B.tiles.map{ case ((kk.j),_a) = (kk,((kk,j),_a)) })

.map{ case (_,(((i,k),_a),((kk)),_a))) = ((i,j.,V(_a,_b))}
.reduceByKey(®))

where V(_a,_b) is translated to efficient code that multiplies the
tiles _a and _b:

{ val V = Array.of Dim[Double](N«N);
for {i « O until N; j « 0 until N; k < 0 until N }
V(i*N+j) += _a(iN+k)s_b(k+N+j);
vV

and _x®_y is pairwise addition:

{ val V = Array.of Dim[Double](N«N);
for {i < O until N;j « 0 until N }
V(iN+j) = _x(i*N+j)+_y(i=N+j);
vV}

To generate these reduceByKey calls, we consider the group-by
qualifier in combination with the aggregations in the compre-
hension. Recall that, based on the discussion in Section 3 and on
Equation (12), any tiled comprehension with a group-by can be
put into the following form:

tiled(n, m)[(p,e) | G, group by p, ¢’] .
= tiled(n,m)[(p,2) | ¢, group by p, z < [e | ¢"]]
= tiled(n, m)[(p, 2) | g, group by p,
z « f(®1/w1.map(g1),..., ®m/wm.map(gm)) |,

for some variables w; lifted by group-by, some monoids ®;, and
some functions g; and f. That is, we abstract all reductions
®;/w;.map(g;) from the term [e | ?] Notice that, here, the
key of the tiled comprehension is equal to the group-by key,
p. Then, the group-by comprehension can be translated to the
following reduceByKey operation:

Tiled(n, m, rdd[(p, (array(N = N)[g1(w1) | g2 1. ..,
array(N * N)[gm(wm) | q21))
lqr]
.reduceByKey(®”).mapValues(f’))

Like in (17), the qualifiers in gj are those from g that do not refer
to the tile values and each tiled generator (ki,v;) « X; has been
modified to be (k_l, _v;) « Xj.tiles. The qualifier list g3 is equal
to g but each tiled generator (ki,0i) « X; in q has been modified
to be (k;,v;) « _0;. The monoid ®’ is:

(x1, .. xm) ® (Y1, Ym) = (X1 &] Y1,...,Xm By, Ym)

where x. EB,'C yi applies @y to the tile elements pairwise:

array(N = N)[a & b | ((i, j),a) « xx, ((iL, j), b) < yg,
i ==1i, jj==j]

Finally, f”(x1,...,%m) is:
array(N = N)[f(a1,...,am)
I ((ilajl): al) & X150, ((lm,]m), am) — Xm,
il ::---::im’ jl ::-~-::jm]

For the matrix multiplication example, there is only one reduction
with @; = + and f is identity, which means that mapValues(f")
is identity too.

322

5.4 Using a Group-By-Join

There is a special class of tiled comprehensions with a group-
by that can be translated to more efficient code. Consider the
following comprehension:

tiled(n,m)[(k,®/c) | ((i,j),a) « A, ((ii,jj),b) « B,

kx(i,j) == ky(ii,jj), let c = h(a,b),

group by k: (gx(i,j), gy(iijj))],
for some arbitrary term functions kx, ky, gx, gy, and h, and some
aggregation ®. Notice that the key k of the output matrix is
the group-by key, which must be a pair where one component
depends on i,j and the other on ii,jj only. This is called a group-
by-join because it is a join between A and B, followed by a group-
by with aggregation. Matrix multiplication, defined in (9), is an
example of a group-by-join. Many group-by comprehensions can
be put in the group-by-join form by combining generators in
pairs forming joins until we are left with two generators and
a group-by. A group-by-join can be evaluated very efficiently
by joining each row of tiles from A with each column of tiles
from B, which requires that we replicate every tile from A and
B. When applied to the matrix multiplication, this algorithm is
equivalent to the block matrix multiplication implemented using
the SUMMA algorithm [14]. The group-by-join is translated to
the following Spark RDD code:

Tiled(n, m, rdd[(k,V) | (k,(__a,__b)) < As.cogroup(Bs)]),

where As, Bs, and V are

As = Atiles.flatMap{ case ((i,j),a)
= (0 until B.cols/N).map(k = ((gx(i,j).k),(kx(i,j),a))) }
Bs = B.tiles.flatMap{ case ((ii,jj),b)
= (0 until A.rows/N).map(k = ((k,gy(ii,jj)),(ky(ii,jj),b))) }
V = array(N=N)[(k,®/c)
| (k1,_a) « __a, (k2,_b) « _ b, k2 == k1,
((ij).a) «_ a, ((ii,jj).b) « _b, kx(i,j) == ky(ii,jj),
let ¢ = h(a,b), group by k: (gx(i,j),gy(ii,jj)) 1

That is, the tiles in A are replicated B.cols/N times and the tiles
in B are replicated A.rows/N times.

6 PERFORMANCE EVALUATION

Our system, SAC, has been implemented using Scala’s compile-
time reflection and macros. Our code generator uses the Scala
typechecker to infer the types of the generator domains to select
the appropriate sparsifiers based on these types. It translates array
comprehensions to Scala code that calls Spark RDD operations
whose functional arguments use the Scala’s Parallel Collections
library [20] for multicore parallelism. The produced Scala code
is embedded in the rest of the Scala code generated at compile-
time. The source code of our system is available on GitHub at
https://github.com/fegaras/array.

We have evaluated the performance of our system relative to
the Spark MLIib.linalg library [5]. MLlib uses the linear algebra
package Breeze, but in our experiments, instead of using a native
Breeze library implementation, such as OpenBLAS, we used the
pure JVM implementation of this library. Although there are
many linear algebra libraries that support distributed tiled arrays,
MLIib is the closest to our work since it is built on top of Spark
and has a Scala APL

The platform used for these evaluations was a small cluster
of 4 nodes, where each node has one Xeon E5-2680v3 at 2.5GHz,
with 24 cores, 128GB RAM, and 320GB SSD. For our experiments,

160 ‘ 900 ‘ 700 ‘
-
140 | MLiib - -m - JURL 800 | o =] | M
SAC —w— o MLlib - -= 600 MLlib = -m - .
120 b 4 - 1 SAC GBJ —#— -
2 | gS0r i
3100 | 3 .
o 1 Zao0p .- i
E 80 : 2
= 1 FE300f
S 60 s
e 1 F200}
40 | i 1
20 | E] 100 |-
0 T S S S 0 L 0 ‘
0 2 4 6 8 10 12 14 16 18 0 05 1 15 2 25 3 35 4 0 05 1 15 2 25 3 35 4

A) Matrix Addition: Elements (x100,000,000)

B) Matrix Multiplication: Elements (x100,000,000)

C) Matrix Factorization: Elements (x100,000,000)

Figure 4: Performance evaluation of matrix addition, multiplication, and factorization of tiled matrices on Apache Spark

we used Apache Spark 3.0.0 running on Apache Hadoop 2.7.0.
Each Spark executor was configured to have 11 cores and 60GB
RAM. Consequently, there were 2 executors per node, giving a
total of 8 executors. Each program was evaluated over 5 datasets
and each evaluation was repeated 4 times, so each data point
in the plots in Figure 4 represents the mean value of these 4
evaluations.

The matrices used in our experiments were tiled matrices
where each tile had size 1000*1000. We implemented these dis-
tributed tiled matrices in MLlib.linalg as instances of BlockMatrix,
where each tile was an instance of DenseMatrix. The matrices
used for addition and multiplication were pairs of square matrices
of the same size filled with random values between 0.0 and 10.0.
The largest matrices used in matrix addition had 40000 x 40000
elements and size 12GB each, while those used in matrix multi-
plication had 20000 x 20000 elements and size 3GB each. Matrix
multiplication was translated in two different ways in SAC: as a
join followed by a group-by, and using a special group-by join
(see Section 5.4 for a discussion). The results are shown in Fig-
ure 4.A and B. We can see that, for matrix addition, SAC performs
a bit faster than MLIib. For matrix multiplication though, SAC
(that uses a join followed by a group-by) is up to 3 times slower
than MLIib, while MLib is up to 6 times slower than SAC GBJ
(that uses the special group-by join).

The third program to evaluate was one iteration of matrix
factorization using gradient descent [16]. The goal of this compu-
tation is to split a matrix R of dimension n X m into two low-rank
matrices P and Q of dimensions n X k and m X k, for small k,
such that the error between the predicted and the original rat-
ing matrix R — P x Q7 is below some threshold, where P x QT
is the matrix multiplication of P with the transpose of Q and
‘~’ is cell-wise matrix subtraction. Matrix factorization can be
implemented by repeatedly applying the following operations:

E « R-PxOT
P < P+y(2EXQ-AP)
Q0 « O+y@ETxP-1Q)

where y is the learning rate and A is the normalization factor used
in avoiding overfitting. For our experiments, we used y = 0.002
and A = 0.02. The matrix to be factorized, R, was a square sparse
matrix n#n with random integer values between 0 and 5, in which
only the 10% of the elements were non-zero. The dimension k
was set to 1000. The derived matrices P and Q had dimension
n * 1000 and were initialized with random values between 0.0
and 1.0. The largest matrix R used had 20000 X 20000 elements
and size 3GB. The results are shown in Figure 4.C. We can see
that SAC (using GB]J) is up to three times faster than MLIib.

323

7 RELATED WORK

Many array-processing systems use special storage techniques,
such as regular tiling, to achieve better performance on certain
array computations. TileDB [19] is an array data storage man-
agement system that performs complex analytics on scientific
data. It organizes array elements into ordered collections called
fragments, where each fragment is dense or sparse, and groups
contiguous array elements into data tiles of fixed capacity. Unlike
our work, the focus of TileDB is on the I/O optimization of ar-
ray operations by using small block updates to update the array
stores. SciDB [22] is a large-scale data management system for
scientific analysis based on an array data model with implicit
ordering. The SciDB storage manager decomposes arrays into a
number of equal sized and potentially overlapping chunks, in a
way that allows parallel and pipeline processing of array data.
Like SciDB, ArrayStore [21] stores arrays into chunks, which are
typically the size of a storage block. One of their most effective
storage method is a two-level chunking strategy with regular
chunks and regular tiles. SciHadoop [7] is a Hadoop plugin that
allows scientists to specify logical queries over arrays stored in
the NetCDF file format. Their chunking strategy, which is called
the Baseline partitioning strategy, subdivides the logical input
into a set of partitions (sub-arrays), one for each physical block of
the input file. SciHive [15] is a scalable array-based query system
that enables scientists to process raw array datasets in parallel
with a SQL-like query language. SciHive maps array datasets in
NetCDF files to Hive tables and executes queries via Map-Reduce.
Based on the mapping of array variables to Hive tables, SQL-
like queries on arrays are translated to HiveQL queries on tables
and then optimized by the Hive query optimizer. SciMATE [25]
extends the Map-Reduce API to support the processing of the
NetCDF and HDF5 scientific formats, in addition to flat-files.
SciMATE supports various optimizations specific to scientific
applications by selecting a small number of attributes used by an
application and perform data partition based on these attributes.
TensorFlow [1] is a dataflow language for machine learning that
supports data parallelism on multi-core machines and GPUs but
has limited support for distributed computing. Linalg [26] (now
part of Spark’s MLIib library) is a distributed linear algebra and
optimization library that runs on Spark. It consists of fast and
scalable implementations of standard matrix computations for
common linear algebra operations, such as matrix multiplication
and factorization. One of its distributed matrix representations,
BlockMatrix, treats the matrix as dense blocks of data, where
each block is small enough to fit in memory on a single machine.
Linalg allows matrix computations to be pushed from the JVM

down to hardware via the Basic Linear Algebra Subprograms
(BLAS) interface. SystemML [6] is a machine learning (ML) li-
brary built on top of Spark. It supports a high-level specification
of ML algorithms that simplifies the development and deploy-
ment of ML algorithms by separating algorithm semantics from
underlying data representations and runtime execution plans.
Distributed matrices in SystemML are partitioned into fixed size
blocks, called Binary Block Matrices. Although many of these
systems support block matrices, their runtime systems are based
on a library of build-in, hand-optimized linear algebra operations,
which is hard to extend with new storage structures and algo-
rithms. Furthermore, many of these systems lack a comprehen-
sive framework for automatic inter-operator optimization, such
as finding the best way to form the product of several matrices.
Like these systems, our framework separates specification from
implementation, but, unlike these systems, our system supports
ad-hoc operations on array collections, rather than a library of
build-in array operations, is extensible with customized storage
structures, and uses relational-style optimizations to optimize
array programs with multiple operations.

There has also been some recent work on combining linear
algebra with relational algebra to let programmers implement ML
algorithms on relational database systems [2, 17, 18]. The work
by Luo et al. [18] adds a new attribute type to relational schemas
to capture arrays that can fit in memory and extends SQL with
array operators. Although their system evaluates SQL queries in
Map-Reduce, the arrays are not fully distributed. Instead, large
matrices must be split into multiple rows as indexed tiles while
the programmer is expected to write SQL code to implement ma-
trix operations by correlating these tiles using array operators in
SQL. That is, SQL queries on distributed arrays are customizable
but the array operators used in correlating tiles are build-in from
a library. However, even if these tile operations were customiz-
able, this system would differ from ours since it does not separate
specification from implementation, thus making hard to change
the array storage, and requires programmers to write explicit
code to correlate tiles.

8 CONCLUSION AND FUTURE WORK

Our performance results show that SAC can be as efficient as
a highly optimized array library when applied to certain dis-
tributed operations on tiled arrays. The same layered approach
can also be used for translating comprehensions on other types
of array storage, such as on tiled arrays where each tile is stored
in the compressed sparse column format. As future work, we
plan to look at operations that are hard to express using compre-
hensions, such as inverting a matrix, which requires a special LU
decomposition algorithm. We believe that such operations should
be coded as black-box library functions in a high-performance
array library, such as BLAS or LAPACK. Such operations would
require special optimizations to fuse them with general array
comprehensions and with each other. Furthermore, our frame-
work cannot directly generate calls to a high-performance array
library, such as BLAS or LAPACK, or to GPU libraries, such as
CUDA or OpenGL, but it can be improved to recognize certain
patterns in a comprehension that are translatable to such calls.
Finally, we would like to investigate general methods to optimize
storage, such as unboxing arrays where vectors of tuples are
mapped to tuples of vectors, and to parallelize irregular struc-
tures using nested parallelism.

324

Acknowledgments: Our evaluations were performed at the
XSEDE Comet cloud computing infrastructure at SDSC, www.
xsede.org, supported by NSF.

REFERENCES

[1] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghe-

mawat, G. Irving, M. Isard, M. Kudlur, J. Levenberg, R. Monga, S. Moore,

D. G. Murray, B. Steiner, P. Tucker, V. Vasudevan, P. Warden, M. Wicke, Y. Yu,

and X. Zheng. TensorFlow: A System for Large-Scale Machine Learning. In

USENIX Conference on Operating Systems Design and Implementation (OSDI),

pages 265-283, 2016.

L. Chen, A. Kumar, J. Naughton, and J. M. Patel. Towards linear algebra over

normalized data. Proceedings of the VLDB Endowment (PVLDB), 10(11):1214—

1225, 2017.

Apache Flink. http://flink.apache.org/, 2020.

Apache Spark. http://spark.apache.org/, 2020.

Apache Spark MLIib. https://spark.apache.org/mllib/, 2020.

M. Boehm, M. Dusenberry, D. Eriksson, A. V. Evfimievski, F. M. Manshadi,

N. Pansare, B. Reinwald, F. Reiss, P. Sen, A. Surve, and S. Tatikonda. SystemML:

Declarative Machine Learning on Spark. PVLDB, 9(13):1425-1436, 2016.

[7] J. Buck, N. Watkins, J. Lefevre, K. Ioannidou, C. Maltzahn, N. Polyzotis, and
S. A. Brandt. SciHadoop: Array-based Query Processing in Hadoop. In
International Conference for High Performance Computing, Networking, Storage
and Analysis (SC), 2011.

[8] J. Dean and S. Ghemawat. MapReduce: Simplified Data Processing on Large

Clusters. In Symposium on Operating Systems Design and Implementation

(0SDI), 2004.

J.J. Dongarra, J. D. Croz, I. Duff, and S. Hammarling. A Set of Level 3 Basic

Linear Algebra Subprograms. In ACM Transactions on Mathematical Software,

16(1):1—17, 1990.

L. Fegaras. An Algebra for Distributed Big Data Analytics. JFP, special issue

on Programming Languages for Big Data, volume 27, 2017.

L. Fegaras. A Query Processing Framework for Large-Scale Scientific Data

Analysis. In Transactions on Large-Scale Data- and Knowledge-Centered Systems

(TLDKS), Springer, July 2018.

L. Fegaras and M. H. Noor. Compile-Time Code Generation for Embedded

Data-Intensive Query Languages. In IEEE BigData Congress, 2018.

L. Fegaras and M. H. Noor. Translation of Array-Based Loops to Distributed

Data-Parallel Programs. Proceedings of the VLDB Endowment (PVLDB), 13(8):

1248-1260, 2020.

R. A. Geijn and J. Watts. SUMMA: Scalable Universal Matrix Multiplication

Algorithm. In Concurrency: Practice and Experience, 9(4):255-274, 1997.

Y. Geng, X. Huang, M. Zhu, H. Ruan, and G. Yang. SciHive: Array-based query

processing with HiveQL. In IEEE International Conference on Trust, Security

and Privacy in Computing and Communications (Trustcom), 2013.

Y. Koren, R. Bell, and C. Volinsky. Matrix Factorization Techniques for Rec-

ommender Systems IEEE Computer, 42(8):30-37, August 2009.

A. Kunft, A. Alexandrov, A. Katsifodimos, and V. Markl. Bridging the gap:

towards optimization across linear and relational algebra. In ACM SIGMOD

Workshop on Algorithms and Systems for MapReduce and Beyond, pages 1-4,

2016.

S. Luo, Z. J. Gao, M. Gubanov, L. L. Perez, and C. Jermaine. Scalable linear

algebra on a relational database system. IEEE Transactions on Knowledge and

Data Engineering (TKDE), 31(7):1224—1238, 2018.

S. Papadopoulos, K. Datta, S. Madden, and T. Mattson. The TileDB Array Data

Storage Manager. PVLDB, 10(4):349-360, 2016.

A. Prokopec, P. Bagwell, T. Rompf, and M. Odersky. A Generic Parallel

Collection Framework. In Euro-Par Parallel Processing, 2011.

E. Soroush, M. Balazinska, and D. Wang. ArrayStore: A Storage Manager for

Complex Parallel Array Processing. In ACM SIGMOD International Conference

on Management of Data, pages 253-264, 2011.

E. Soroush, M. Balazinska, S. Krughoff, and A. Connolly. Efficient Iterative

Processing in the SciDB Parallel Array Engine. In 27th International Conference

on Scientific and Statistical Database Management (SSDBM), 2015.

P. Wadler. List Comprehensions. Chapter 7 in The Implementation of Functional

Programming Languages, by S. Peyton Jones, Prentice Hall, 1987.

P. Wadler and S. Peyton Jones. Comprehensive Comprehensions (Comprehen-

sions with ‘Order by’ and ‘Group by’). In Haskell Symposium, pages 61-72,

2007.

Y. Wang, W. Jiang, and G. Agrawal. SciMATE: A Novel MapReduce-like

Framework for Multiple Scientific Data Formats. In IEEE/ACM International

Symposium on Cluster, Cloud and Grid Computing (CCGrid), 2012.

R. B. Zadeh, X. Meng, A. Ulanov, B. Yavuz, L. Pu, S. Venkataraman, E. Sparks,

A. Staple, and M. Zaharia. Matrix Computations and Optimization in Apache

Spark. In International Conference on Knowledge Discovery and Data Mining

(KDD), pages 31-38, 2016.

M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley, M. J. Franklin,

S. Shenker, and 1. Stoica. Resilient Distributed Datasets: A Fault-Tolerant

Abstraction for In-Memory Cluster Computing. In USENIX Symposium on

Networked Systems Design and Implementation (NSDI), 2012.

(]

[10]

[11

[12]

(13

[14]

[15]

[16]

[17]

(18

[19]

[20

[21]

[22]

[23]

[24]

[25]

[26]

[27]

	Scalable Linear Algebra Programming for Big Data AnalysisLeonidas Fegaras

