
JENGA - A Framework to Study the Impact of Data Errors
on the Predictions of Machine Learning Models

Sebastian Schelter∗
University of Amsterdam

s.schelter@uva.nl

Tammo Rukat
Amazon Research

tammruka@amazon.com

Felix Biessmann†
Einstein Center Digital Future

fbiessmann@beuth-hochschule.de

ABSTRACT
Machine learning (ML) is increasingly used to automate deci-
sion making in various domains. Almost all common ML models
are susceptible to data errors in the serving data (for which the
model makes predictions). Such errors frequently occur in prac-
tice, caused for example by program bugs in data preprocessing
code or non-anticipated schema changes in external data sources.
These errors can have devastating effects on the prediction qual-
ity of ML models, and are, at the same time, hard to anticipate
and capture.

In order to empower data scientists to study the impact as well
as mitigation techniques for data errors in ML models, we pro-
pose Jenga, a light-weight, open source, experimentation library.
Jenga allows its users to easily test their models for robustness
against common data errors. Jenga contains an abstraction for
prediction tasks based on a dataset and a model, an easily extend-
able set of synthethic data corruptions (e.g., for missing values,
outliers, typos and noisy measurements) as well as evaluation
functionality to experiment with different data corruptions.

Jenga supports researchers and practitioners in the difficult
task of data validation for ML applications. As a showcase for
this, we discuss two use cases of Jenga: studying the robustness
of a model against incomplete data, as well as automatically
stress testing integrity constraints for ML data expressed with
tensorflow data validation.

1 INTRODUCTION
Many companies and organisations are moving to a data-driven
approach, where machine learning (ML) is used to assist and
automate decisionmaking in various domains. Yet the application
of ML in production settings often faces a number of pitfalls.
Almost all common ML models are susceptible to data errors
in the serving data (for which the model makes predictions).
Such errors frequently occur in practice, caused for example
by program bugs in data preprocessing code or non-anticipated
schema changes in external data sources. These errors can have
devastating effects on the prediction quality of ML models [12],
and are, at the same time, hard to anticipate and capture. While
many aspects of the impact of data changes on ML models are
studied in the ML literature [1, 7, 9], it can be difficult to relate
this research to the errors occurring in practical ML applications,
as these approaches all require distributional assumptions about
the change.
Data errors in productionmachine learning. Frequently, the
errors in production deployments do not originate from changes
∗work done while at New York University
†work done while at Amazon Research and Beuth University, Berlin, Germany

© 2021 Copyright held by the owner/author(s). Published in Proceedings of the
24th International Conference on Extending Database Technology (EDBT), March
23-26, 2021, ISBN 978-3-89318-084-4 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

in the data generating real-world processes, but from program-
ming errors in the data pipelines constructing the serving data [4]
or from errors during data integration from different sources [6,
21]. Such errors often only become apparent once models are
deployed in complex production use cases [16].

We have come across several real world instances of such
data errors. In one case, a linear model had been trained on de-
mographic data (including a person’s age), and the age value
had been missing for some records for which the model should
supply predictions. A software engineer (without knowledge of
the model intricacies) then wrote preprocessing code to replace
all missing age values with zeroes, the default value for initial-
ising integers in many programming languages. This led to a
unwanted misbehavior of the model, which effectively treated all
these records as “toddlers”. In another case, we learned about an
ML model where the pipelines for training and serving data were
running in different cloud environments. As a result, the code
bases for data preparation on the training and serving side acci-
dentally diverged, which introduced hard to detect data errors.
Such errors can have devastating impact, as all guarantees about
the reliability of the predictions of the ML model may be lost,
which can lead to monetary losses (e.g., if buying decisions are
made based on the predictions of a forecasting model) and bad
user experiences (e.g., if users are presented with non-sensical
recommendations in an online shop).
Evaluating the robustness ofmodels against common data
errors. These examples show the need for testing the robustness
of ML models to data errors before they are deployed to produc-
tion. Recent research focuses on detecting and handling such
data errors, e.g., by proposing unit tests and integrity constraints
for ML data [4, 17], ML-based missing value imputation [2] and
validating the predictions of black box models [19]. In our experi-
ence, it is difficult to provide broadly valid empirical evaluations
of these approaches, and to generate synthetically corrupted data
that represents the scenarios that we encounter in the real world.

To address this need, we design the Jenga library, which we
present in this paper. Jenga enables data scientists to study the
robustness of their models against errors commonly observed
in production scenarios. Based on the findings from experiment-
ing with Jenga, users can take appropriate measures to protect
their deployed models against impactful data errors, e.g., with
custom integrity constraints implemented via tensorflow data
validation [4].

In summary, this paper provides the following contributions.
• We introduce our open source framework Jenga to study the
impact of data errors on ML models (Section 2).
• We describe how to implement custom prediction tasks and
synthetic data corruptions in Jenga (Section 3).
• Wediscuss two use cases for Jenga: studying the robustness of a
model against incomplete data, and automatically stress testing
integrity constraints for ML data expressed with tensorflow
data validation (Section 4).

Industrial Paper

Series ISSN: 2367-2005 529 10.5441/002/edbt.2021.63

https://OpenProceedings.org/
http://dx.doi.org/10.5441/002/edbt.2021.63

Jenga is publicly available under an open source license at
https://github.com/schelterlabs/jenga.

2 FRAMEWORK DESIGN
We introduce the design of Jenga. The goal of Jenga is to enable
data scientists to evaluate the impact of data errors on their
models, and to evaluate techniques that make these models more
robust. We design Jenga around three core abstractions: (i) tasks
contain a raw dataset, an ML model, and represent a prediction
task; (ii) data corruptions take raw input data and randomly apply
certain data errors to them (e.g., missing values); (iii) evaluators
take a task and data corruptions, and execute the evaluation by
repeatedly corrupting the test data of the task, and recording the
predictive performance of the model on the corrupted test data.

We provide three sample tasks (Section 2.1), several data cor-
ruptions (Section 2.2) and two different evaluators (Section 2.3)
as part of the framework.

2.1 Example Tasks
We provide three exemplary prediction tasks in Jenga. Note that
users can define and implement their own custom tasks with low
effort (see Section 3 for details). We choose simple binary classifi-
cation tasks for product review classification (predicting whether
the review of a video game was deemed helpful), income estima-
tion (predicting whether a person earns more than $50,000 per
year based on demographic data) and image recognition (distin-
guishing sneakers from ankle boots), which resemble real world
use cases, and leverage publicly available datasets and widely
used ML models. We focus on relatively small-scale problems,
which do not require costly infrastructure (e.g., the models can
be trained in a couple of minutes on a multicore CPU), in order to
allow users to rapidly experiment and play with our framework.
These tasks are meant as examples to enable users to test our
data corruptions and evaluators, and serve as a template for our
users to integrate Jenga with their own custom prediction tasks.

2.2 Data Corruptions
In the following, we describe the types of data corruptions avail-
able in Jenga. Each error type requires the specification of a col-
umn c to be affected by the error and a fraction of rows r ∈ [0, 1]
that should be affected.
Corruption sampling.: Whether or not a value is affected by a
corruption is often the result of errors in complex preprocessing
pipelines. In order to account for realistic corruption patterns we
model the fraction of rows affected by a corruption as follows.
A value xc in column c is corrupted (i) independent of other
values (corrupted values are sampled completely at random), (ii)
dependent on values in columns other than c (corrupted values
are sampled at random), or (iii) dependent on values in column
c (corrupted values are sampled not at random). This modelling
is inspired by literature on missing value imputation, where
three types of missingness are commonly distinguished [10]. As
these three sampling procedures a can capture the complex error
patterns often observed in practice we chose to make it applicable
not only to missing value corruptions, but to all other error types
as well.
Missing values. Missing values are amongst the most common
data errors in practice. Missing values can have devastating
effects on training and prediction, depending on how a data
pipeline deals with missing values before feeding the data to a

downstream ML model. An important factor for the impact of
missing values are the missingness patterns, described in the pre-
vious paragraph, missing completely at random (MCAR), missing
at random (MAR) and missing not at random (MNAR).

We additionally support the injection of missing values based
on "prediction difficulty", where we consider the fact that there
MLmodel downstream that is affected by missing data. This error
type considers the entropy of the ML model predictions for the
data rows and discards values based on their difficulty for the
model, akin to uncertainty sampling in active learning.
Swapped values. We replace a specified ratio of values in one
column with values in another column. This corruption mimics
users mixing up entries in input forms [6] or programming errors
in data preparation code, where a programmer accidentally swaps
target columns to write to.
Scaling. We randomly scale a subset of the values by 10, 100
or 1000. This perturbation mimics cases where the scale of an
attribute is accidentally changed in preprocessing code (e.g., be-
cause a developer accidentally changes the code to record dura-
tions in milliseconds instead of seconds).
Noise. We corrupt a fraction of a column’s values by adding
gaussian noise centered at the data point with a standard devia-
tion randomly selected from the interval of 2 to 5. This corruption
is intended to mimic measurement errors.
Encoding errors. This corruption replaces certain characters in
string attributes (e.g., a with á), and is meant to simulate encoding
errors, e.g., for data retrieved from web pages which indicate a
false encoding.
Image corruptions. Dealing with corrupted training images is
a well studied problem in computer vision [3] for which a lot
of tooling exists already. We therefore integrate existing image
corruptions from the augmentor1 library into jenga.

2.3 Evaluators
Finally, Jenga provides so-called evaluators, which measure the
impact of data corruptions on themodel’s predictive performance.
Jenga currently features two evaluators: The CorruptionImpactEvaluator
takes a provided task, a trained model and a manually specified
list of corruptions. It applies each data corruption to the held-out
test set of the task and computes the predictive performance of
the model in light of the data corruption. We show how to use
this evaluator with a few lines of code in Section 3.1, and discuss
a detailed example of measuring the impact of missing values on
a task in Section 4.1.

The second evaluator allows users to additionally integrate a
data validation schema into the evaluation. In many cases, it is
not possible to make an MLmodel completely robust against data
errors [19]. A common approach to prevent feeding corrupted
data to deployed ML models is to run data validation checks
on the serving data on which the model is applied. Popular li-
braries for this task are tensorflow data validation (TFDV)2 [4]
or Deequ3 [18]. They allow users to define a schema and con-
straints for the serving data (e.g., that a given attribute must
not contain missing values), and efficiently execute this check
before passing the data to an ML model. Jenga contains a custom
SchemaStresstestEvaluator for feature data validation with a
TFDV schema. This evaluator works analogous to the previous

1https://github.com/mdbloice/Augmentor
2https://www.tensorflow.org/tfx/guide/tfdv
3https://github.com/awslabs/deequ

530

one, but additionally records whether the check of a provided
data validation schema would have correctly detected the neg-
ative impact of the data corruption. We provide an extensive
example for this evaluator in Section 4.2.

3 USAGE AND CUSTOMISATION
We implement Jenga based on several popular open source ML
frameworks in python. We leverage pandas for data wrangling,
and numpy for numerical computations. We implement feature
extraction and preprocessing via scikit-learn’s pipeline abstrac-
tion, and also use classical ML models from this library. We rely
on keras and tensorflow for defining and training neural networks.

In the following we first give an example of how to use Jenga
to evaluate the impact of data corruptions (Section 3.1), and
subsequently discuss how to implement custom tasks and data
corruptions in Jenga’s API in Section 3.2.

3.1 Evaluating the Impact of Data Errors
The core use case of jenga is to evaluate the impact of certain
data corruptions on a prediction task. This can be implemented
with a few lines of code: We have to instantiate the task and data
corruptions that we want to evaluate, and can execute the eval-
uation with Jenga’s CorruptionImpactEvaluator. This allows
us to measure the impact of a predefined list of data corruptions
on the predictive performance of a model.

Create the prediction task
task = IncomeEstimationTask ()
Train a baseline model
model = task.fit_model(task.train_data ,
task.train_labels)

Specify the data corruption to test
corruption = MissingValues(column='age',
missingness='mcar', fraction=0.05)

Create the evaluator
evaluator = CorruptionImpactEvaluator(task)
Run the evaluation with 10 repetitions
result = evaluator.evaluate(model ,
num_repetitions=10, corruption)

Impact on predictive performance
print(f""" Score on

clean data: {result.baseline_score}
corrupted data: {result.corrupted_scores} """)

Here, we setup a task, train the corresponding model and define
the corruption that we are interested in. We provide these to
the evaluator together with the specification of the number of
repetitions to execute for each corruption. The evaluator repeat-
edly corrupts the (copied) test data of the task, computes the
prediction quality of the model on the corrupted data and finally
provides a result object with the corresponding scores for each
corruption to investigate. Note that we could also have specified
more than one data corruption to evaluate.

3.2 Custom Tasks and Data Corruptions
We design Jenga with the goal to make it easy for data scientists
to wrap their existing code as a prediction task, which allows
them to reuse our data corruptions and evaluators. In addition, we
also make it easy to design custom data corruptions. Therefore,
we next describe how to implement the two basic building blocks
of Jenga, a Task and a DataCorruption.
Implementing a custom task. Jenga allows data scientists to
implement custom tasks with low effort. We provide an abstract
base class ClassificationTask with two methods that users
must implement. In the constructor, users have to load the input
data for the task. Next, they have to implement the fit_model

method, which trains the accompanying prediction model for
the task from training data provided in a pandas dataframe. The
model produced by this must support scikit-learns predictor API.
Finally, the score_on_test_data must be implemented, which
computes the desired metric for the task (e.g., ROC AUC) from
the predicted label probabilities of the model.
Implementing a customdata corruption. At the core of Jenga
are data corruptions, whose impact on the predictive performance
of a model we want to investigate. Data corruptions transform
a dataframe into another dataframe with potentially corrupted
values. We provide an abstract base class, DataCorruption, that
users can extend by providing only a singlemethod, called transform.
In the following listing, we implement a data corruption that mim-
ics a case where duration that needs be expressed in seconds is
accidentally recorded in milliseconds (e.g., scaled by a factor of
1000) in a fraction for the rows.

class MillisInsteadOfSeconds(DataCorruption):
...
def transform(self , data):
Operate on a copy of the data
corrupted_data = data.copy(deep=True)
Pick a random fraction of the rows
rows = np.random.uniform(len(data)) < self.fraction
Multiply the column values of the chosen rows
corrupted_data.loc[rows , self.column] *= 1000
return corrupted_data

We first conduct a deep copy of the input data, which we will
corrupt later on. Then, we randomly pick the indexes of the rows
that we want to corrupt, and finally mulitply their values by a
1000 to mimic milliseconds. Note that tasks and data corruptions
implemented with our API can be readily used in the existing
evaluators from Jenga, as outlined in Section 3.1.

4 EXAMPLE USE CASES
We discuss two examplary use cases of our framework that re-
semble real world problems which we encountered in production
ML applications. Note that we provide implementations (in the
form of Jupyter notebooks) for all these use cases in our github
repository at https://github.com/schelterlabs/jenga.

4.1 Measuring the Robustness of a Model
against Incomplete Data

Overview. In our first experiment, we showcase how to study
the impact of missing values on the predictions of a model. This
targets a common usage scenario, where data scientists, who
have a trained model in production (or ready for production),
want to study its robustness towards incomplete data with Jenga.
They want to reach a conclusion on how well the model itself (in
combination with different missing value imputation methods)
can mitigate the impact of missing values in the serving data. In-
complete data is a very common issue in real world deployments,
where data is often missing as a result of programming errors,
data integration issues or unanticipated schema changes in an
external data source.
Setup. We experiment with a logistic regression model for our
income estimation task from Section 2.1. The goal of this task is to
predict from demographic data whether an individual has a high
income. We train a model on clean training data, and evaluate
its predictive performance (in terms of ROC AUC) on test data
with synthetically injected missing values. We focus on four
categorical attributes in the data: education, marital_status,

531

1% 10% 50% 99%
fraction

0.800

0.825

0.850

0.875

AU
C

education (MCAR)

clean data
placeholder
mode
datawig

1% 10% 50% 99%
fraction

0.800

0.825

0.850

0.875

AU
C

marital_status (MCAR)

clean data
placeholder
mode
datawig

1% 10% 50% 99%
fraction

0.800

0.825

0.850

0.875

AU
C

workclass (MCAR)

clean data
placeholder
mode
datawig

1% 10% 50% 99%
fraction

0.800

0.825

0.850

0.875

AU
C

occupation (MCAR)

clean data
placeholder
mode
datawig

1% 10% 50% 99%
fraction

0.800

0.825

0.850

0.875

AU
C

education (MAR)

clean data
placeholder
mode
datawig

1% 10% 50% 99%
fraction

0.800

0.825

0.850

0.875
AU

C
marital_status (MAR)

clean data
placeholder
mode
datawig

1% 10% 50% 99%
fraction

0.800

0.825

0.850

0.875

AU
C

workclass (MAR)

clean data
placeholder
mode
datawig

1% 10% 50% 99%
fraction

0.800

0.825

0.850

0.875

AU
C

occupation (MAR)

clean data
placeholder
mode
datawig

1% 10% 50% 99%
fraction

0.800

0.825

0.850

0.875

AU
C

education (MNAR)

clean data
placeholder
mode
datawig

1% 10% 50% 99%
fraction

0.800

0.825

0.850

0.875

AU
C

marital_status (MNAR)

clean data
placeholder
mode
datawig

1% 10% 50% 99%
fraction

0.800

0.825

0.850

0.875

AU
C

workclass (MNAR)

clean data
placeholder
mode
datawig

1% 10% 50% 99%
fraction

0.800

0.825

0.850

0.875

AU
C

occupation (MNAR)

clean data
placeholder
mode
datawig

Figure 1: Evaluation of the robustness of amodel for the income estimation task against incomplete data.We plot the AUC
score achieved with different missing value imputation strategies (placeholder,mode and datawig) against the fraction of
injected missing values. The impact differs by attribute and there is no clear dominating imputation strategy, indicating
that it is difficult to make the model fully robust against this type of data error.

workclass, and occupation, and inject missing values into 1%,
10%, 50% and 99% of randomly chosen values of a given attribute.

We repeat this process for all three kinds of missing values
(“missing completely at random” (MCAR), “missing at random”
(MAR), “missing not at random” (MNAR)) as discussed in Sec-
tion 2.2. We repeat each individual configuration ten times, and
report the performance on corrupted test data (in comparison
to the performance on clean data), where we differentiate be-
tween three different ways to make the model handle the missing
values:
• First, we replace missing values with a constant placeholder
symbol.
• Secondly, we replace missing values with the mode (the most
frequent value in the column) via scikit-learn’s SimpleImputer
• Thirdly, we train a dedicated ML model to impute missing val-
ues based on the structure present in the complete records [2].
We leverage the datawig library4, which automatically fea-
turises tabular data and trains a neural network to predict the
missing values.

Results. The experimental results are shown in Figure 1. We
find that the impact of the missing values is highly dependent on
the attribute we target. There is nearly no impact for workclass,
a very minor impact for occupation for less than 50% missing
values, a much stronger impact for education, and we encounter
the highest impact for missing values in marital_status. We
additionally see that the impact is in some cases different for
different types of missing values, e.g., values “missing not at
random” in the marital_status attribute seem to be easier to
handle than the other types of missingness.

In summary, we find no clear dominating strategy for handling
the missing values in this particular task. Having the model deal
4https://github.com/awslabs/datawig

with the missing values via a placeholder symbol is simple and
works well in many cases. However, there are some setups where
leveraging a dedicated missing value imputation strategy helps,
e.g., datawig for a high fraction of missing values in education
or for occupation. We conclude that the model itself cannot
handle missing values reliably in all cases, even in combination
with imputation. Thus, the data scientists need to put checks in
place to safeguard the serving data on which the model is applied.

4.2 Stresstesting Integrity Constraints
for ML data

Overview. Our next experiment shows how to put safeguards
in place for an ML model. This experiment applies a schema and
constraints for ML data, and executes a stresstest for them, as
discussed in Section 2.3. We leverage the product review classifi-
cation task discussed in Section 2.1, where the goal is to predict
whether uses found the review of a videogame helpful or not.

We train a model for this task, and additionally create a schema
with integrity constraints for the test data in TFDV. Next, we
run Jenga’s SchemaStresstest which generates random data
corruptions for the test data, and determines whether our schema
catches these errors, and what the impact of these on the pre-
diction quality of the model (in terms of ROC AUC) would have
been.

In real world use cases, it is difficult for data scientists to come
up with an appropriate schema and constraints for their data,
and we develop our stresstest to uncover errors which are not
caught by the current schema. As a consequence, data scientists
can iteratively improve their integrity constraints until they pass
the stresstest.

532

from jenga.tasks.reviews import VideogameReviewsTask
from jenga.evaluation.schema import SchemaStresstest
import tensorflow_data_validation as tfdv
Setup task
task = VideogameReviewsTask ()
Create a schema to test
train_data_stats =
tfdv.generate_statistics_from_df(task.train_data)

Auto -infer schema from training data
schema = tfdv.infer_schema(statistics=train_data_stats)
Manually adjust schema
review_date_feature =
tfdv.get_feature(schema , 'review_date ')

review_date_feature.distribution_constraints
.min_domain_mass = 0.0

Define model to include in stress test
model = task.fit(task.train_data , task.train_labels)
Run stress test with 250 randomly generated
data corruptions
stress_test = SchemaStresstest ()
results = stress_test.run(task , model , schema ,
num_corruptions=250 , performance_threshold=.03)

Setup. The code above shows the setup of the experiment. We
generate a schema for the feature data of the task, with a semi-
automatic approach, where we first have TFDV automatically
infer a schema for the data (via tfdv.infer_schema).

The schema correctly identifies the data types and categori-
cal domains of most of the attributes of the data. It is too strict
however, as it does not account for the fact that all the values in
the review_date column will change for future data. We manu-
ally adjust the schema for this attribute by setting the minimum
domain mass that must be shared between the values found at
schema inference time and the future values to zero, allowing
new values to appear in the column. The following listing shows
an excerpt of the schema and constraints for the data, containing
type information, completeness requirements and domain values
for the data attributes.

...
feature {
name: "star_rating"
type: INT
presence { min_fraction: 1.0 } }

feature {
name: "verified_purchase"
type: BYTES
domain: "verified_purchase"
presence { min_fraction: 1.0 } }

feature {
name: "review_date"
type: BYTES
domain: "review_date"
presence { min_fraction: 1.0 }
distribution_constraints { min_domain_mass: 0.0 } }

...
string_domain {
name: "verified_purchase"
value: "N"
value: "Y"

}
...

We evaluate the schema with a stress test which applies 250
randomly generated data corruptions to the serving data of the
model and measures their impact on the prediction quality.
Results. The model achieves an AUC of 0.78828 on clean data,
and we consider all predictions on corrupted data with more
than 3% decrease in prediction performance as failures. Jenga
categorizes the results as following:

• True positives, where TFDV reports a schema violation and
the prediction quality on the corrupt test data drops below the
threshold.
• True negatives, where TFDV reports no schema violation and
the prediction quality on the corrupt test data is within the
threshold.
• False positives, where TFDV reports a schema violation, but the
prediction quality on the corrupt test data does not drop below
the threshold. Note that it might still make sense to capture
and investigate these data errors, as they can be indicators of
problems in preprocessing code or external data sources.
• False negatives, where TFDV reports does not report a schema
violation, but the prediction quality on the corrupt test data
does drop below the threshold. These are the most important
findings from a stress test as they indicate data errors to which
the model would be vulnerable in production. It is imperative
to adjust the schema to catch these errors.
In the following, we list several findings from our stress test

example in Table 1 and discuss them.
True positives. Out of the 250 corruptions, we find 88 true posi-
tives. For example, we find that the model crashes for missing
values in the numeric star_rating column, and that the pre-
diction quality drops more than 3% for gaussian noise in this
column and for a large number of swapped values between the
verified_purchase and title column. Note that all of these
errors are correctly detected by TFDV.

error type column(s) frac comment

True positives

missing values star_rating .25 crash
swapped values review_body, vine .75 unseen values
swapped values verified_purchase,

title
.45 unseen values

missing values vine .53 incompleteness
gaussian noise star_rating .25 type (int to float)

True negatives

encoding vine .72 no changes
encoding review_id .83 column not used
swapped values review_id,

product_parent
.17 columns not used

missing values product_id .27 column not used

False positives

missing values vine .93 unseen values
gaussian noise star_rating .16 type (int to float)
swapped values product_id,

marketplace
.35 unseen values

encoding marketplace .72 unseen values

False negatives

scaling star_rating .92 range check missing
encoding title_and_review .76 no encoding checks
missing values title_and_review .80 no length checks
swapped values title_and_review,

review_headline
.75 no length checks

Table 1: Results found by the schema stress test for detect-
ing impactful data errors on the product review task.

True negatives. We additionally find 75 true negatives, which
mostly include cases where a textual column is being corrupted
which is ignored by TFDV, but also not used by the model, whose
prediction quality is therefore not affected by the corruption.
False positives. We encounter 39 false positives. We for example
see that even a high number of missing values in the vine column

533

do not strongly affect the prediction quality, as well as a low
number of noisy values in the star_rating column or encoding
errors in the marketplace column, which is not used by the
model.
False negatives. The most important results from the stress test
are false negatives, e.g., data corruptions that are not detected
by our TFDV schema, but strongly affect the prediction quality
of the model. In a real world use case, we need to extend our
schema to catch all these errors. We see that scaling values in
the star_rating column strongly affects the prediction qual-
ity. This is an indicator that we should add a range check for
this column to our schema. Furthermore, all kinds of errors in
the title_and_review column negatively affect the prediction
quality. This is a textual column for which TFDV does not gen-
erate constraints automatically. Checks for both the length and
encoding of the values in that column are required to capture the
outlined errors.

We argue that it should become a best practice to execute
such stresstests for data errors before putting ML models into
production, and we think that such testing capabilities should be
integrated into common ML deployment pipelines.

5 RELATEDWORK
Addressing the challenges in productionizingMLmodels is a field
with growing interest in recent years [2, 8, 12, 16, 20]. Several
solutions were proposed for validating ML models and their
predictions. Most of these originate from a statistical ML or a data
management perspective. Approaches from the ML community
are based on distributional assumptions about the data shift, such
as label shift [13], and covariate shift [1]. These assumptions
often seem inapt to describe practically relevant data changes
for engineers, such as the errors described above. Moreover, the
proposed methods often limit themselves to adapting a particular
model or learning paradigm.

There exist several approaches from the data management
community to validate the input data of ML pipelines. For exam-
ple, Google’s TFX platform [4] offers validation for input data
via a feature schema, and Deequ [17] enables unit tests for data,
but both of them do not quantify the potential impact of errors
on the model predictions. On a related note, there is a growing
body of work on model monitoring [19], model diagnosis [5] and
model unit testing for neural networks [11].

6 LEARNINGS & CONCLUSION
During our work on real world ML deployments, we have repeat-
edly come across scenarios where data errors heavily impacted
deployed models and applications.

Missing values in data can in some cases, propagate through
various connected pipelines until a customer facingmodel crashes,
and it is very tedious to trace these errors back to the original data
source which introduced the missing values. In internationalised
applications, which operate on text in non-western languages,
it is common to encounter encoding issues which are often in-
troduced by a wrongly configured intermediate data store, and
are again very hard to pinpoint and fix. Another common source
of errors is calendar-related data, where dates and durations are
often incorrect, e.g., due to movable holidays. Furthermore, often
ML models are trained by specialised teams, and then handed
over to business teams. In such cases, we often experienced that
the data provided to the ML experts had not been sampled in a
representative way by the business team, and as a consequence,

the resulting model will not perform well later on due to the
dataset shift introduced by the non-representative sampling.

These experiences motivate our presented library Jenga, which
enables data scientists to evaluate the performance of ML models
under data errors. Jenga builds on existing ML libraries, and
allows practitioners and researchers to quickly build ML testing
suites for their models with a broad range of data errors that we
observed over several years of maintaining ML applications. We
think that is is necessary to establish a set of best practices for
testing ML models, analogous to established best practices like
unit testing and integration test in software engineering. The
goal of Jenga is to collect a huge library of data corruptions that
occur in the real world, and uses these to automate the testing of
ML models, ideally with an integration into upcoming systems
for continuous integration for ML [14].

In the future, we aim to extend Jenga to extend more diverse
tasks (e.g., regression problems or ranking problems). We will
continue to work on Jenga as part of our recently proposed vision
for automated ML model monitoring with respect to data qual-
ity [15]. We hope that Jenga can contribute to future research on
data governance for end-to-end management platforms for ML.

REFERENCES
[1] Steffen Bickel, Michael Brückner, and Tobias Scheffer. 2009. Discriminative

learning under covariate shift. JMLR 10, 2137–2155.
[2] Felix Biessmann, David Salinas, Sebastian Schelter, Philipp Schmidt, and

Dustin Lange. 2018. Deep Learning for Missing Value Imputation in Tables
with Non-Numerical Data. In CIKM. 2017–2025.

[3] Marcus D Bloice, Peter M Roth, and Andreas Holzinger. 2019. Biomedical
image augmentation using Augmentor. Bioinformatics 35, 21 (2019), 4522–
4524.

[4] Eric Breck, Neoklis Polyzotis, Sudip Roy, StevenWhang, andMartin Zinkevich.
2019. Data Validation for Machine Learning. In SysML.

[5] Yeounoh Chung, Tim Kraska, Steven Euijong Whang, and Neoklis Polyzotis.
2018. Slice finder: Automated data slicing for model interpretability. SysML.

[6] Joseph M Hellerstein. 2008. Quantitative data cleaning for large databases.
United Nations Economic Commission for Europe (UNECE) (2008).

[7] Jiayuan Huang, Arthur Gretton, Karsten M Borgwardt, Bernhard Schölkopf,
and Alex J Smola. 2007. Correcting sample selection bias by unlabeled data.
NeurIPS, 601–608.

[8] Peng Li, Xi Rao, Jennifer Blase, Yue Zhang, Xu Chu, and Ce Zhang. 2020.
CleanML: A Study for Evaluating the Impact of Data Cleaning on ML Classifi-
cation Tasks. In ICDE.

[9] Zachary C Lipton, Yu-Xiang Wang, and Alex Smola. 2018. Detecting and
Correcting for Label Shift with Black Box Predictors. ICML.

[10] R. J. A. Little and D. B. Rubin. 2002. Statistical analysis with missing data. 2nd
ed. Wiley-Interscience, Hoboken, NJ,.

[11] Kexin Pei, Yinzhi Cao, Junfeng Yang, and Suman Jana. 2017. Deepxplore:
Automated whitebox testing of deep learning systems. SOSP, 1–18.

[12] Neoklis Polyzotis, Sudip Roy, Steven Euijong Whang, and Martin Zinkevich.
2018. Data Lifecycle Challenges in Production Machine Learning: A Survey.
SIGMOD Record 47, 2, 17.

[13] Stephan Rabanser, Stephan Günnemann, and Zachary Lipton. 2019. Failing
loudly: an empirical study of methods for detecting dataset shift. In NeurIPS.
1394–1406.

[14] Cedric Renggli, Frances Ann Hubis, Bojan Karlaš, Kevin Schawinski, Wentao
Wu, and Ce Zhang. 2019. Ease. ml/ci and Ease. ml/meter in action: towards
data management for statistical generalization. VLDB 12, 12 (2019), 1962–1965.

[15] Tammo Rukat, Dustin Lange, Sebastian Schelter, and Felix Biessmann. 2019.
Towards Automated ML Model Monitoring: Measure, Improve and Quantify
Data Quality. ML Ops workshop at MLSys (2019).

[16] Sebastian Schelter, Felix Biessmann, Tim Januschowski, David Salinas, Stephan
Seufert, and Gyuri Szarvas. 2018. On Challenges in Machine Learning Model
Management. IEEE Data Engineering Bulletin 41.

[17] Sebastian Schelter, Dustin Lange, Philipp Schmidt, Meltem Celikel, Felix Biess-
mann, and Andreas Grafberger. 2018. Automating large-scale data quality
verification. PVLDB 11, 12, 1781–1794.

[18] Sebastian Schelter, Dustin Lange, Philipp Schmidt, Meltem Celikel, Felix Biess-
mann, and Andreas Grafberger. 2018. Automating large-scale data quality
verification. Proceedings of the VLDB Endowment 11, 12 (2018), 1781–1794.

[19] Sebastian Schelter, Tammo Rukat, and Felix Biessmann. 2020. Learning to
Validate the Predictions of Black Box Classifiers on Unseen Data. SIGMOD.

[20] D Sculley et al. 2015. Hidden technical debt in machine learning systems.
NeurIPS, 2503–2511.

[21] Michael Stonebraker and Ihab F Ilyas. 2018. Data Integration: The Current
Status and the Way Forward. IEEE Data Eng. Bull. 41, 2 (2018), 3–9.

534

	Industrial Papers
	JENGA - A Framework to Study the Impact of Data Errors on the Predictions of Machine Learning ModelsSebastian Schelter, Tammo Rukat, Felix Biessmann

