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ABSTRACT

Many distributed databases deploy primary-copy asynchronous
replication, and offer programmer control so reads can be directed
to either the primary node (which is always up-to-date, but may
be heavily loaded by all the writes) or the secondaries (which
may be less loaded, but perhaps have stale data). One example is
MongoDB, a popular document store that is both available as a
cloud-hosted service and can be deployed on-premises. The state-
of-practice is to express where the reads are routed directly in
the code, at application development time, based on the program-
mers’ imperfect expectations of what workload will be applied
to the system and what hardware will be running the code. In
this approach, the programmers’ choice may perform badly un-
der some workload patterns which could arise during run-time.
Furthermore, it might not be able to utilize the given resources
to their full potential — meaning database customers pay more
money than needed.

In this paper, we present Decongestant: a system which will
automatically and dynamically, as the application is running,
choose where to direct reads, sending enough reads to secon-
daries when this will reduce load on a congested primary and
boost the performance of the database as a whole, but without
exceeding the maximum data staleness that the clients are willing
to accept. A central insight is to use measured latency of read
operations on primary and secondaries to determine whether the
primary is congested.

In an experimental evaluation, we demonstrate our system
adapts well to dynamically changing workloads, obtaining perfor-
mance benefits when they can arise from use of the secondaries,
while ensuring that returned values are fresh enough given client
requirements. Our approach is decentralised and can be used
by both cloud-consumers and on-premises users: it uses only
client observations and the limited diagnostic data provided by
the database to its clients.

1 INTRODUCTION

Distributed databases have become a popular offering due to their
scalability and elasticity. Distributed databases typically deploy
a combination of data sharding and replication over multiple
nodes to provide both scalability and availability. Thus, there are
typically multiple copies of data, and some distributed database
offerings expose those to programmers via a performance tuning
parameter where one can decide to which node (primary or sec-
ondary) the read requests should get routed. The challenge is to
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use this tuning knob wisely to balance the load, for good perfor-
mance, while minimizing its pitfalls, namely access to potentially
stale data. One typical example in this space is MongoDB, a pop-
ular NoSQL distributed database management system. MongoDB
Atlas! is the corresponding cloud-hosted MongoDB service.

MongoDB internally is a classic log-based, primary-copy repli-
cation system. It is usually run as a replica set, where each node
keeps a logical copy of the database [35]. Each replica set is a
log-replicated state machine [34]. In cloud settings, all nodes
are usually placed within one geographical region, but spread
in different availability zones. There is one primary copy which
processes all write operations. Each secondary copy pulls the
updated log from the primary and then replays it to keep up
with the primary. Thus, data on the secondary copies might be
stale compared to that on the primary copy in a workload with
frequent write operations. During a fail-over, one secondary copy
is elected as the new primary.

Clients can direct read operations to either the primary copy
or to a secondary copy (this is called Read Preference [24] and is
indicated in the API as an optional parameter of a read request
call). When reading from the primary copy on a healthy cluster
with default settings, fresh data is returned. But if the primary
copy is saturated, the read latency can be huge. In that case, a user
can gain larger throughput and lower read latency by reading
from secondary copies; however, data returned might be stale.

The state-of-the-art practice is to "hard-code" the Read Pref-
erence, making a choice explicitly when writing the application
program. This is not ideal for several reasons. Firstly, developers
may have insufficient information about workload and hardware
capabilities for them to make a sensible choice when the code is
written. Also, the "sensible" choice may differ over time as work-
load changes, but hard-coding is not able to adapt dynamically.
Furthermore, the standard Read Preference options are limited
to either primary or secondary, so that the nodes in a MongoDB
cluster will never do the heavy-lifting together.

This paper shows how to capture knowledge at run-time of the
current condition, and change the Read Preference dynamically,
so that the overall performance of MongoDB can be improved.
We adjust the proportion of secondary reads sent, in order to
distribute work among the nodes of a MongoDB cluster. Our
goal is to gain extra performance by reducing problems of con-
gested nodes, so that the database can serve more clients without
upgrading its hardware. This should help lower the cost of Mon-
goDB for users. But we need to ensure each client sees data values
that are "fresh enough" for the client’s requirements, so we must
avoid directing reads to a secondary when that node is too stale.

Achieving this is not easy. We must make the decision on
where to direct a read on client-side information. Our approach

!https://www.mongodb.com/cloud/atlas
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aims at both MongoDB cloud-consumers and on-premises users
— there is no need to alter server code, or monitor the database’s
internal state. We only take measurements from the outside, as
operations are submitted, or call the service API for the limited
statistics it provides on the current status of servers. Our key
insight to overcome this challenge is to measure the latency of
read operations that were recently submitted by the client, for
those sent to the primary and also for those sent to the secondary.
In this paper we look at reads individually; if the client also needs
session properties such as read-your-own-writes, or transaction-
respecting snapshots, those can be obtained through capabilities
of MongoDB, e.g. causal consistency[37].
Our key contributions are

e A mechanism to determine at run-time as either a cloud-
consumer, or an on-premises user, whether the primary, or
the secondaries, are currently congested with reads. This
uses client-side measurements of the latency of recent
read operations with each Read Preference, estimates the
server-side component of that by subtracting network
round-trip latency, and compares these estimates from the
primary versus from the secondaries. This ratio is used
in a simple feedback control. A high ratio indicates too
much load on the primary, so more reads should go to the
secondaries as long as those are not too stale. On a low
ratio, indicating too much load on the secondaries, fewer
reads should be sent to the secondaries in future.

e A system design and prototype implementation, called
Decongestant, which uses this mechanism. It chooses at
run-time to send a client’s reads to primary or secondary
as appropriate, for good performance while respecting
a client-assigned limit on acceptable staleness of values
returned.

o Experimental evaluation of Decongestant, to show that it
maintains good performance while workloads vary (and it
can do better than either hard-coded approach), and that
it respects a client-assigned limit on staleness.

Our earlier poster paper [21] presented initial ideas in this
direction. Here we adapt some of the text from there, describing
motivation, background, and related work. Novel features of De-
congestant, compared to [21], are: avoiding use of a secondary
when it would give values that are too stale for client require-
ments (and never send reads to the secondaries when the clients
can not tolerate any stale reads); capability to deliberately, in a
controlled way, mix use of primary and secondaries in the same
period, in order to outperform either hard-coded approach; im-
proved latency estimate that separates network effects from those
of server congestion; evaluations that show run-time adaptation
to workloads that change in various aspects; a new S workload
we use to demonstrate the validity of staleness reports from the
servers (which Decongestant uses) as estimate of client-observed
staleness.

The remainder of the paper is structured as follows. Section 2
introduces relevant concepts in MongoDB. Section 3 presents the
design of Decongestant. We provide an evaluation of Deconges-
tant in Section 4. Section 5 highlights, and contrasts with, related
work. We conclude in Section 6.

2 BACKGROUND

Some text in this section already appeared in [21].
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2.1 A brief overview of MongoDB and
MongoDB-as-a-Service

As we have already discussed in section 1, MongoDB internally

uses asynchronous primary-copy replication for fault-tolerance.

This means it usually runs as a replica set. Fail-overs are rare [35].

This justifies our approach that exploits some of the capacity of

the secondary nodes.

MongoDB also provides a sharding mechanism to enable hor-
izontal scaling [22]. The entire database can be sharded into a
number of shards, where each shard is a distinct subset of the
whole database. Each shard can be deployed as a replica set, geo-
graphically far away from one another. MongoDB sharding is not
used in this paper but the techniques we describe can be applied
to sharded clusters, which support the same Read Preference API
as standalone replica sets.

MongoDB Atlas is a "containerized" version of MongoDB,
provided as a service. MongoDB Atlas has the same core as the
open source Community Server, but with some additional, closed
source functionality (e.g., security features). Customers are able
to use MongoDB Atlas in a pay-as-you-go model. MongoDB
Atlas is hosted on diverse cloud service platforms: Amazon Web
Service (AWS), Microsoft Azure, or Google Cloud Platform (GCP).
Customers can select the service locations, memory and storage
size, number of vCPUs, etc. The database can be deployed with
a few clicks. It is also trivial to scale-up if more computational
power or storage are needed. MongoDB Atlas has various APIs
for different programming languages and applications.

The main source of operational metrics offered by both Mon-
goDB and MongoDB Atlas is via calling MongoDB serverSta-
tus command. The MongoDB metrics can be queried frequently,
but these deal only with internal properties, and do not report on
hardware/OS/network aspects. MongoDB Atlas provides extra
sources of operational metrics through MongoDB Atlas web APL
This supplies some hardware metrics. However, those metrics
only update once per minute, and can only be queried at a limited
rate (100 requests per minute per project).

2.2 Read Preference

The Read Preference setting on read operations determines where
they will be sent by MongoDB clients [24]. Read Preference op-
tions include primary (default), primaryPreferred, sec—
ondary, secondaryPreferred, and nearest. If the Read
Preference primary, or secondary, is selected, then the read-
ing request is directed to the primary copy, or to one of the
secondary copies, respectively. Note that in MongoDB the users
can not specify which of the secondary copies a read request
will be sent to. PrimaryPreferred and secondaryPre—
ferred provide users the option that in most cases the reads
are sent to the primary or the secondary copies. However, in the
situations where the preferred copy is not available, the reads
are routed to the other option. When Read Preference near—
est is chosen, the reading requests are directed to the nearest
copy to the client based on client-measured network latency. The
MongoDB client libraries periodically check which node is near-
est. In our research, we use options primary and secondary to
balance the workload among all MongoDB nodes.

When requesting a read on secondary copies, the clients can
include amaxStalenessSeconds value to specify the maxi-
mum data staleness the client is happy to accept [25]. However,
the maxStalenessSeconds value must be set to 90 seconds



or larger. As we will show later, Decongestant is able to bound
the data staleness to substantially lower levels (eg 10 seconds).

The client driver randomly chooses a secondary copy to route
a secondary read, as long as the latency between the secondary
nodes do not differ by more than 15 milliseconds [28]. In our
experiments, all secondary reads are directed to one secondary
copy randomly.

There is another tuning knob in MongoDB called Read Con-
cern which determines the durability, consistency, and isolation
properties of the data read from MongoDB [23]. We use local
Read Concern, which is the default setting, in all our experiments.

2.3 Data staleness in MongoDB

Let’s first look at how MongoDB performs a write operation.
When a write request reaches the primary copy of MongoDB,
there will be an atomic transaction issued doing two things:
1) applying the database operation to the primary; 2) record-
ing operations on the primary’s operation log (called oplog).
Once that transaction commits on the primary (and after wait-
ing for any other transactions with earlier oplog entries to
also commit), the oplog entry is visible to secondaries, and
it will then be pulled by the secondaries and written to their
oplog. After that the secondaries will apply the operations.
Each node records the timestamp of the latest oplog applied
(called 1lastAppliedOpTime). The lastAppliedOpTime
of each node are known by all others.

By calculating the difference between the lastAppliedOp-
Time of a secondary node and the lastAppliedOpTime of
the primary node, we can estimate the data staleness of the sec-
ondary node. Since the lastAppliedOpTime of one node is
known by all other nodes, the comparison can take place at any
of the MongoDB copies. This information can be provided to a
client in the serverStatus command.

There is a potential source of error here. The last AppliedOp—

Time for a secondary copy as recorded on the primary copy,
might be earlier than the truth. This is because that the latest
lastAppliedOpTime of the secondary copies might not yet
have been transmitted to the primary copy. So the data staleness
of the secondary, when calculated using statistics reported by
the primary copy, might be larger than reality. Similarly, the
lastAppliedOpTime of the primary copy as known on some
secondary copy may be earlier than the current truth. So data
staleness as calculated from the status at a secondary node can
be smaller than reality. In Decongestant, we use the server—
Status information from the primary for this calculation, to be
conservative in enforcing a client-requested limit on staleness.

3 DESIGN OF DECONGESTANT

In this section, we describe the design of Decongestant, an au-
tomated system to direct the reads dynamically for MongoDB
during run-time of the application.

Our design needs to overcome some challenges. The foremost
challenge is to have a single mechanism that can detect a vari-
ety of congestion situations. The bottleneck resource of a node
of MongoDB, when it saturates, varies with different DBMS’s
hardware, configurations, and workload. It may be CPU usage,
memory usage, even having a large number of Write Ahead
Logs (WAL) waiting to be flushed to the disk. We also need a
mechanism to detect when a secondary is too stale to be usable,
considering the client’s freshness requirement. An important
challenge is that our mechanisms need to use only information
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Figure 1: A simplified architecture of Decongestant

readily available to the consumers of the MongoDB, as we do
not do any modification of the server. On the client-side, we
can observe requests and responses for the operations submitted
to the service, and we also have some limited access to server
information through available status reports (but this is much
less detailed than what a server-side design could exploit).

In this section, we first present an overview of Decongestant
and we briefly introduce the decision-making component of the
system, called Read Balancer. Then, we describe how the client
application works in Decongestant. After that, we depict how
Read Balancer does its job. Finally, we discuss some of the design
details and considerations of Decongestant.

3.1 System Architecture

Figure 1 shows a simplified architecture of Decongestant. A com-
ponent called Read Balancer resides on each client system where
(maybe multiple) client applications are executing. The Read Bal-
ancer decides the percentage of read operations to be sent to
the secondary copies. This percentage is to be chosen so as to
improve the overall performance, by redirecting reads when one
of the servers is congested, but not using secondaries at all if their
data would be too stale to meet the client’s specified demand for
data freshness. The Read Balancer communicates with the clients
via a few shared variables:

o The latest decision for each client on what percentage
of the read-only transaction should be directed to the
secondary copies, called Balance Fraction. The range of
the Balance Fraction is between 10% to 90%, inclusive;
or 0%. Balance Fraction is set to 0 when Decongestant
estimates some secondary’s data staleness exceeds the
client’s limit, so they will stop sending any read requests
to the secondaries till this is remedied. The clients can
express that they are not willing to accept any stale data,
by setting the data staleness limit to 0.

Two lists which keep track of client-observed transaction
latencies (for reads that were sent to Primary and to Sec-
ondaries, respectively).



3.2 How do the client applications work in
Decongestant?

In Decongestant, a client is expected to cooperate with the Read
Balancer, as follows. Before invoking any read-only transaction
call, the client first examines the most recent decision on the
Balance Fraction from the Read Balancer. Then the client should
flip a biased coin, and with a probability equal to the Balance
Fraction, the call should to be directed the secondary copies of
MongoDB. The clients keep track of the latency of their read-only
transactions, and report them to the Read Balancer through one
of the shared queues (depending on which Read Preference was
actually used in the call).

3.3 How does the Read Balancer work?

In this section, we show how the Read Balancer acts. We first
provide a high level overview of the Read Balancer and how it
changes the Balance Fraction. Then, we discuss some technical
details and considerations. Algorithm 1 shows the pseudo code
for Read Balancer.

The Read Balancer periodically updates suggestions on the
Balance Fraction, i.e. the percentage of read-only transactions
that should go to the secondary copies. On system start up, the
Read Balancer initializes the Balance Fraction as 10%. The Balance
Fraction will be updated periodically (every 10 seconds in our
implementation). We keep the Balance Fraction so it is never 0,
except when this is needed because a secondary is too stale to use
given the client-defined limit, or when the clients are not willing
to accept any stale data. Similarly, Balance Fraction is never 100%.
The reason to exclude the extreme values is to ensure that some
reads are regularly using each server, so that the system has
up-to-date data on the situation of the servers.

Within each period (when there is no need for the Read Bal-
ancer to recalculate its recommended fraction), the Read Balancer
pings all nodes of the MongoDB cluster regularly, in order to
record the Round Trip Time (RTT) between the client system
and each node. In addition, the Read Balancer queries the pri-
mary node of the MongoDB replica set once per second, using
the serverStatus command to get the latest data staleness
estimation of each secondary node. Whenever the data stale-
ness estimation on any secondary node exceeds the maximum
data staleness the clients are willing to except, the recommended
Balance Fraction will become 0, and so all read requests will
be directed to the primary, until the data staleness situation on
secondary nodes improves. (See detailed discussions in section 4.)

By the end of each period, the Read Balancer retrieves, from
the shared lists, the recorded latencies of those read-only trans-
actions that were sent to the primary during the period, and it
calculates the median ("P50") value of these latencies; similarly
it takes the list of latencies for read-only transactions sent to
the secondaries, and determines the median of those. The Read
Balancer then calculates a value called Server-Side Latency, for
the reads on primary and secondaries, respectively. Server-Side
Latency for a corresponding Read Preference option equals the
median ("P50") latency of the read requests with that Read Pref-
erence option minus the median ("P50") Round Trip Time (RTT)
of all MongoDB nodes corresponding to that the Read Preference
option. See subsubsection 3.3.1 for details. These numbers act
as estimates for the delay experienced by operations as they are
performed on the server, including time spent within executing
the MongoDB instance and also delays in the operating system
or disk. The intuition here is that when a node is congested, this

538

Algorithm 1: Algorithm for Read Balancer

SharedVars: StaleBound - Client-set limit on data

PrivateVars:

staleness

Letient,primary - list of client-observed
latencies of primary-sent ops
Letient,secondary - list of client-observed
latencies of secondary-sent ops

Bal - current Balance Fraction; initially
LOWBAL

RecentBal - list of 4 recent periods’ Balance
Fractions; initially all LOWBAL
Staleness - array of staleness reported by
primary for each secondary

RTT - array of round-trip times to each
server

Constants: DELTA - one-period change in Balance

Fraction (10%)

LOWBAL - lowest value for non-zero
Balance Fraction (10%)

HIGHBAL - highest value for Balance
Fraction (90%)

LOWRATIO - latency ratio above which we
increase Balance Fraction (0.75)
HIGHRATIO - latency ratio below which we
decrease Balance Fraction (1.3)

1 Function Rcv-ServerStatus():

2

3

10

11

12

13
14

15
16

17
18

19

20

21

22

23

24
25
26

27

e

Update Staleness from ServerStatus

if (StaleBound == 0) or (max(Staleness) > StaleBound)
then
| Bale—0

else
‘ Bal < RecentBal.latest()

end

nd
Function OnPeriodEnd|():

Lss primary < Psg (Lclient,primary) -
Pso(RTTprimary)

Lss,secondary A PSO(Lclient,secondary) -
Ps5o(RTTsecondary)

Ratio « Lss primary / Lss secondary

if Ratio > HIGHRATIO then

NewBal « min(RecentBal.latest() + DELTA,
HIGHBAL)

else if Ratio < LOWRATIO then

NewBal « max(RecentBal latest() - DELTA,
LOWBAL)

else if All RecentBal entries are the same then

NewBal « max(RecentBal latest() - DELTA,
LOWBAL)

else
‘ NewBal < RecentBal.latest()
end
RecentBal.dequeue().enqueue(NewBal)
if (StaleBound == 0) or (max(Staleness) > StaleBound)
then
‘ Bal «— 0
else
‘ Bal « RecentBal.latest()
end

28 end




figure will increase, no matter whether the bottleneck resource
is in MongoDB or elsewhere on the server.

The Read Balancer uses the ratio of the Server-Side Latency
of reads on the primary, to the Server-Side Latency of reads on
the secondary. To achieve the maximum performance possible
of the MongoDB Cluster, all the nodes in the cluster should
do the heavy-lifting together, sharing the work. This means,
ideally, the ratio should be close to 1. If the ratio is much larger
than 1, it means the primary copy is congested compared to the
secondary copies. In this case, the Read Balancer increases the
Balance Fraction for the next period, directing more reads to
the secondary nodes. On the other hand, if the ratio of Server-
Side Latency is much less than 1, indicating that the secondary
nodes are congested more than the primary nodes, then the Read
Balancer would decrease the Balance Fraction, sending less reads
to the secondary copies in the next period. If the ratio is close
to 1 and it has been close to 1 for quite a while, Read Balancer
would also decrease the Balance Fraction to explore "downward".
This is to make sure the reads go to the primary node as much
as possible, in order to improve the data freshness and avoid
potential stale reads [26]. Unlike our previous work [21], the
Read Balancer does not look for one "correct” Read Preference in
each period. Instead, it tries to balance the workload among all
the nodes to achieve the best performance possible.

3.3.1 Server-Side Latency. As discussed before, the Read Bal-
ancer utilises Server-Side Latency to make decisions. Server-Side
Latency of a Read Preference option is found as follows: we take
the median latency of all read-only invocations with that Read
Preference as observed on the client side in the previous period,
minus the median Round Trip Time (RTT) of all MongoDB nodes
corresponding to that Read Preference choice.

Lss = Pso(Letient) — Pso(RTT)

In MongoDB, all nodes are spread across different availability
zones within a region as much as possible, when deployed in
a public cloud. The Round Trip Time (RTT) between a certain
client and nodes in different availability zone varies. Although
the difference is usually less than 2 milliseconds, it is enough to
impact the latency observed on the client side for those work-
loads with light read-only transactions, such as YCSB, where the
latencies themselves are sometimes only 1 to 2 milliseconds.

3.3.2  Bounded Data Staleness. The Read Balancer also talks
to the primary node of the MongoDB replica set several times
each period, to call serverStatus at the primary. It uses this
information as described in subsection 2.3 to conservatively esti-
mate the data staleness of each secondary node.

The clients can tell the Read Balancer the maximum data
staleness they are happy to accept. As we have explained before,
the MongoDB clients can only choose to read from either the
primary node or from any secondary node, they can not specify
which secondary node they would like the read requests to be
sent to. So, as long as the Read Balancer finds the estimated data
staleness of any secondary node is larger than the threshold
set by the clients, the Read Balancer immediately notifies every
client, that all future read requests should only be sent to the
primary copy - the Balance Fraction is set to be zero. The Read
Balancer resumes a non-zero Balance Fraction once the maximum
estimated data staleness of the secondary copies drops below the
threshold set by the clients.

One concern may be raised here. The Read Balancer restarts
sending read requests to the secondary nodes once the maximum
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data staleness of all secondary nodes drops below the threshold.
Would that extra work cause the data staleness to quickly go
beyond the limit again? We had the same concern. Our empirical
study shows that in MongoDB, data staleness increases gradually
on the secondaries, but when it goes down, it drops swiftly, to
nearly zero. The high-level idea is that the gradually increasing
data staleness is caused by a congested primary node, which is
too busy processing data requests so it is not able to provide the
oplog to the secondary copies. But once the oplog is sent, the
secondary nodes catch up quickly. See Section 4.5.

The data staleness for secondaries which is estimated by this
method may be larger than what a client actually observes. As
well as the possible overestimate from the primary copy not yet
knowing very recent activity updating the secondary, there is
also the possibility that there are oplog entries not yet applied
to the secondary copies but these might not modify the particular
data the MongoDB client queries. We are conservative, and avoid
using a secondary if our (perhaps over-) estimate breaches the
client-set limit on staleness. Section 4.5 reports experiments to
check the alignment between the data staleness estimate used in
our decision, and measurements in a targeted S-workload that
observes latency at clients.

4 EVALUATION

In the following, we present an evaluation of Decongestant. We
first introduce the methodology and settings we use in Section 4.1.
We then demonstrate Decongestant’s ability to detect and adapt
to variation of workloads in Section 4.2. We explore Deconges-
tant’s ability of balancing the load among all MongoDB nodes
to achieve better performance than using current practice in a
read-intensive workload (Section 4.3), and Decongestant’s capa-
bility of trading data freshness for performance in the workloads
with a mixture of reads and writes (Section 4.4). Section 4.5 cov-
ers Decongestant’s competence of bounding the data staleness.
Finally, we show that running S workload concurrently has low
impact on performance measurements of standard workloads, in
Section 4.6.

4.1 Method

4.1.1  Platform. The experiments are executed on AWS. The
MongoDB clients are on an AWS c4.4xlarge instance (16 vCPUs
and 30 GB RAM), located in the region ap-southeast-2.

We deploy our own MongoDB cluster on AWS, in order to
maintain consistent results independent of infrastructure and
software version changes that are out of our control in MongoDB
Atlas. We replicate the configurations from MongoDB Atlas in
June 2020. The MongoDB version is 4.2.6. A 3-node MongoDB
cluster is deployed on 3 AWS r4.2xlarge instances, which has 8
vCPUs and 61 GB RAM, located in the same region as the clients
but different Availability Zones: ap-southeast-2a, ap-southeast-
2b, and ap-southeast-2c, respectively.

4.1.2  Decongestant settings. In all following experiments, De-
congestant considers the ratio of Server-Side Latency of the reads
on the primary to the Server-Side Latency of the reads on the
secondaries as being normal when the value ranges from 0.75 to
1.30. When the ratio is greater than 1.30, Decongestant considers
that the primary is congested, and thus it increases the percent-
age of reads sent to the secondaries in the next period by 10%. A
ratio less than 0.75 leads Decongestant to send 10% fewer reads
to the secondary nodes in the next period, as it shows that the
secondaries are more congested. Balance Fraction starts at 10%



Table 1: Percentage of transactions in the original TPC-C
workload versus the read-write TPC-C workload used in
the experiments.

TPC-C Read-Write TPC-C

Stock Level 4% 50%
Delivery 4% 4%
Order Status 4% 4%
Payment 43% 20%
New Order 45% 22%

and is capped at 90%. Decongestant revisits the Balance Fraction
decision every 10 seconds. In our experiments, unless stated ex-
plicitly, the maximum data staleness the clients are willing to
accept is set to be 10 seconds.

Read Balancer keeps the four previous records of the Balance
Fraction. If they remains the same, Read Balancer pushes down
the Balance Fraction by 10% in the next round.

4.1.3 Baselines. As well as showing the performance of our
prototype system Decongestant, we also look at two baselines
corresponding to current practice. In these, the clients run against
MongoDB, without any Read Balancer installed, or any of the
possible overheads of communicating with it; in the baseline
Primary, each read is hard-coded with Read Preference set to
primary. In baseline Secondary, each read is hard-coded with
Read Preference as secondary.

4.1.4 Workloads. Two different sets of transactions are used
here to evaluate the performance of Decongestant. We use YCSB
[12] with varying read-write percentage: YCSB-A (50% reads
and 50% writes) and YCSB-B (95% reads and 5% writes). YCSB
represents a light-weight workload, with simple get and put
operations. As a more demanding workload, we also use a variant
of TPC-C (we call it read-write TPC-C). This uses the transactions
from TPC-C, but unlike write-heavy traditional TPC-C, we aim
here for a balance between read-only and update transactions. To
do so, the percentage of Stock Level transaction, which represents
a read-only transaction, is set to 50%. Table 1 shows the detailed
breakdown of the read-write TPC-C workload as compared to
standard TPC-C. The TPC-C queries are implemented by Kamsky
[29] who has adapted the TPC-C benchmark to the MongoDB
query language and transaction semantics, as well as adapting it
to MongoDB’s best practices.

4.1.5 S workload to monitor data staleness. In order to check
whether Decongestant keeps the maximum data staleness promise,
we need a method to sample the data staleness from the client side.
While Decongestant uses estimates for staleness based on Mon-
goDB’s internal information on the status of oplog application,
we want to validate our system’s success using real measure-
ments. So, we propose S workload (S stands for staleness). The S
workload could be run standalone, but, in all our experimentsz,
we generate this S workload alongside the main performance-
focused OLTP workloads, such as YCSB, TPC-C.

The high-level idea of S workload is similar to our previous
work [20, 40]. The S workload includes two workers (each worker
can be implemented as a separate process or a thread): one writer
and one reader. The job of the writer is to keep writing the current
timestamp to a dedicated item in the database at a high frequency.

Zexcept in one experiment of Section 4.6.
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It is not necessarily to write as fast as possible, but it should work
at least as fast as the reader does.

Periodically, the reader probes the contents from the various
copies of the dedicated cell. In each probe, the reader sends out
two read requests: one with the Read Preference Primary and the
other with the Read Preference Secondary. The reader records
the results. Then, in the analysis phase (after the experiment),
we can determine the freshness of the data returned from the
secondary reads by comparing the results between the primary
read and the secondary read. A slight variation is done at times
when the main application is not using the secondaries at all (and
so clients will see no staleness at these times): the second read in
each probe of S workload can be simply directed to the primary
copy again.

The staleness monitoring approach used by S workload is a bit
different from the one used by [20, 40]. In those prior works, the
reader only sends one read request in each probe, with the Read
Preference Secondary; during the analysis phase, the timestamp
when the read is sent and the read value are compared, to deter-
mine the staleness gap. The assumption in their approach was
that the timestamp in the dedicated cell in the object database
keeps advancing smoothly. This assumption doesn’t always hold
when monitoring is run together with another existing OLTP
workload. There are times when a write takes a long time to
finish, causing the value in the dedicated cell of the primary
copy to be unchanged for a while. By definition, the value in the
primary copy is fresh. However, the timestamp when the read
request is sent keeps going forward as the S-reads are generated
continuously. So, if the approach described in [20, 40] is used,
fake staleness might be reported.

Note that the data staleness measured by this S workload might
be larger than the data staleness seen by any given application
client, as S workload frequently updates the item being read,
while some application read may be on slowly-changing data,
where the returned value is correct even if the secondary is far
behind in applying the oplog. Still, if we succeed in bounding
staleness seen in S reads, we can be sure that any other application
also has data that is at least this fresh.

4.1.6  Measurements. The experiments have two distinct styles.
In some, we report on the time-varying properties through a run
of a system when a workload is applied (perhaps the workload
changes at specific points during the run). In those experiments,
we report for each separate 10 second period on throughput of
appropriate transactions during the period, Pgg latency (that is,
the time within which were completed 80% of reads of the period),
the percentage of reads that were sent with Read Preference Sec-
ondary during the period, and sometimes data staleness, either
as measured by S workload, or as estimated conservatively us-
ing reports from the primary of the max difference between any
secondary’s lastAppliedOpTime and that of the primary.
Although Server-Side Latency is used by Read Balancer to make
decisions, all latency reported in the following figures are end-to-
end latency observed by the clients. Measuring the actual percent
of reads sent to the secondary copies is done by counting the read
operations which were sent to the primary copy and those sent
to secondary nodes; we do not simply echo what Decongestant
suggests through Balance Fraction.

Other experiments give a single data point for overall per-
formance (throughput, latency or staleness) for runs in some
situation, typically shown in a figure where some important pa-
rameter of the workload (eg number of clients) varies along the



x-axis. In these experiments, except where stated explicitly, each
data point is taken from the average over 3 runs; in each run,
measurements exclude the first 100 seconds, which is treated as
a warm-up period.

4.2 Adapting to dynamic workload

We first claim that Decongestant is able to adapt well to variation
of workloads. We compare it to the outcomes for the two baseline
systems, where all reads have hard-coded read preference setting,
so either all go to the primary, or all to the secondaries.

Figure 2 shows the throughput of read operations, 80-percentile
latency (end-to-end) of read operations, and the actual percent-
age of reads which are sent to the secondary copies, during a run
with a dynamically-changing workload. The workload in this
run starts with YCSB-A (50% reads) with 180 clients, and swaps
to YCSB-B (95% reads) at the 620" second. S workload is run-
ning as well, throughout. For the first 90 seconds, Decongestant
warms up shifting from its initial setting with 10% of reads on
secondaries, over time sending more and more read operations to
the secondaries (Figure 2 (c)), until the highest amount we allow
(90%) of the reads are secondary ones. During this period, the
throughput increases (Figure 2 (a)) and the 80-percentile latency
drops (Figure 2 (b)). From the 90th second to the 620! second,
the percentage of reads sent to the secondary copies stabilises at
90%. This is the same performance we achieved in previous work
[21]. At the 620" second, the workload shifts from YCSB-A (50%
reads) to a read-dominated YCSB-B (95% reads). Decongestant
quickly responds by sending less reads to the secondary. The
percentage of reads routed to the secondary nodes stables at 70%
under this workload. The intuition is that the primary node deals
with 5% writes and a bit less than 1/3 of reads, and two secondary
nodes process between them a bit more than 2/3 of the reads.
Recall that our MongoDB cluster is a three-node cluster with
the same capacity in each node. This shows that Decongestant
successfully balances the read load proportionally to the capacity
behind each Read Preference option. As a result, the throughput
(Figure 2 (a)) of the read operations is higher than either baseline
(only sending read requests to the primary or secondaries); and
the 80-percentile (Figure 2 (b)) latency is better than baselines.

Once the system has adjusted to the changed workload, the
ratio of Server-Side Latency of the reads on the primary to the
Server-Side Latency of the reads on the secondaries remains
between 0.75 to 1.30. During this period, Read Balancer tries to
push more reads to the primary on every fifth period. But as the
Read Balancer finds it does not work well, the Read Balancer
bring the Balance Fraction back to 70%.

Figure 3 is another example showing that Decongestant suc-
cessfully notices and adjusts to the workload shifts; here both
read-intensity and total load change. At the beginning the work-
load is YCSB-B (95% reads) with 180 clients. Then, after 230
seconds, it shifts to YCSB-A with 20 clients. On system start
up, Decongestant increases the percentage of reads sent to the
secondaries (Figure 3 (c)). The percentage soon reaches an opti-
mised state at 70%. During this period, the throughput of read
operations in Decongestant is higher (Figure 3 (a)) and the 80-
percentile latency of those reads (Figure 3 (b)) is lower than when
the Read Preference is hard-coded as Primary or Secondary. At
the 230 second, the workload switches to YCSB-A (50% reads)
with 20 clients. Decongestant quickly decreases the percentage
of reads sent to the secondary, as the primary can now handle
all the load. The allocation becomes stable at the minimum we
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allow (10%), to make sure Read Balancer keeps getting enough
recent information on the state of the secondaries, so we will
detect future congestion if it were to happen.

Figure 4 shows the performance of Decongestant with the dy-
namic read-write TPC-C workload. Unlike previous experiments
on YCSB, the throughput and 80-percentile latency (end-to-end)
here are reported for each 1 minute interval, and the actual per-
centage of secondary Stock Level transactions are recorded every
10 seconds. The workload starts with 20 clients, and then at the
5t minutes the client number increases to 200. After 5 more
minutes, it goes down to 20 clients. Figure 4 (c) shows the ac-
tual percentage of secondary Stock Level transactions. It starts
at around 10%. From the 58 minute, Read Balancer is able to
notice the high contention environment, and quickly pushes up
the percentage of secondary Stock Level transactions. This soon
brings the throughput (Figure 4 (a)) and 80-percentile latency
(Figure 4 (b)) of Decongestant to a level similar to the situation
where the Read Preference is "hard-coded" as Secondary. During
the 5t minute to the 10th minute, there are a few downward
spikes in the actual percentage of secondary Stock Level trans-
actions. They are caused when the maximum data staleness on
the secondary copies exceeds the clients’ threshold, which is 10
seconds; this is detected by Read Balancer, so we stop sending
Stock Level transactions to the Secondary copies. The measured
percentage is not 0, as the staleness check is run once per second,
while the percentage reported here is taken over 10 seconds. The
pink vertical lines in the figure shows the seconds where all reads
are directed to the primary, due to exceeding data staleness. After
the 10" minute, the number of clients drops to 20. Read Balancer
gradually brings back most of the Stock Level transactions to the
now-uncongested primary node, to provide lower staleness.

4.3 Achieving better performance by sharing
load in read intensive workloads

In this section, we show how Decongestant’s capability of bal-
ancing the read load among all the nodes of MongoDB cluster,
achieves a better peak performance for read-intensive workloads,
compared to hard-coding Read Preference as either Primary or
Secondary. Each hard-code approach leaves some node under-
loaded. Decongestant does not try to specially identify whether
the workload is read intensive; instead, the exact same approach
is used throughout. Each data point in a plot is the average over
three runs, excluding the warm-up period.

Figure 5 shows the throughput of reads, 80-percentile latency
(end-to-end) of reads, and the actual percentage of reads sent
to the secondary copies, plotted against number of clients, in
YCSB-B (95% reads). We first discuss the actual percentage of
reads sent to the secondary copies (Figure 5 (c)) over a varying
number of clients. We can see with a low load of between 10 to
50 clients, Decongestant sends most read requests to the primary
node. Decongestant sends more reads to the secondary copies,
with the percentage growing corresponding to client number, in
the range between 50 to 100 clients. The percentage of secondary
reads is roughly stable at around 70% when the number of clients
ranges from 120 to 200. This means, in a MongoDB cluster with
3 nodes of the same capacity, the primary nodes deals with 5%
write operations and around 30% read operations; while the two
secondary nodes between them process 70% read requests. This
shows that all three nodes do the heavy-lifting together.

When the client number is between 120 to 200, all three nodes
work together, instead of the primary node or the secondary
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nodes only, so it is not surprising that Decongestant is able to or two data staleness values observed to be one second by the S
achieve a throughput (Figure 5 (a)) that is around 30% higher workload, when the Read Preference is "hard-coded" as Secondary.
than only routing the read requests to the secondary copies, and Since the granularity for the data staleness is one second, we do
around 2.5 times than only sending read operations to the primary not feel it is very meaningful.

node. We also see that the 80-percentile latency for Decongestant
is lower that the two hard-coded systems when the load is high.

We do not plot data staleness for YCSB-B (95% reads) here. 4.4 Trading data freshness for performance

The 80-percentile data staleness, measured both by S workload In this section, we show that Decongestant is able to trade data
and Decongestant, for YCSB-B are constantly zero in all our freshness for performance when needed in the workloads with a
experiments. This situation is not very surprising, as there are mixture of reads and writes. Again, we point out that Deconges-
only 5% of writes in the workload. There are occasionally one tant never tries to identify whether a workload has a mixture of
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Figure 6: Performance and 80-percentile data staleness
trade-off in YCSB-A for read operations. (a) shows the
trade-off between the throughput and the 80-percentile
data staleness of the read requests. The number above the
marks and the size of them indicates the number of clients.
The upper left corner is the desired area for Decongestant,
with large throughput and small data staleness. (b) shows
the trade-off between 80-percentile latency (end-to-end)
and 80-percentile data staleness for read operations. The
lower left corner is the target zone for Decongestant, with
small latency and data staleness.

reads and writes or it is a read-intensive one: the same method
works for either scenario. The experiments in this section are
each run three times for each setting, and the average value is
taken and shown as a point in the charts.

Figure 6 shows the performance and the data staleness trade-
off for YCSB-A (50% reads). To avoid the figures being too clut-
tered, we only include 3 groups of data points here. The number
above the marks and the size of them indicates the number of

543

clients. Three client numbers are chosen: 20, 100, and 180, repre-
senting light, medium, and heavy load, respectively. Figure 6 (a)
demonstrates the trade-off between the throughput of reads and
the 80-percentile data staleness of them. The upper left corner
is the desired zone in Figure 6 (a), with small data staleness and
large throughput. When the load is low (20 clients), the data
points for the three situations, whether always directed to either
the primary or secondary nodes or with Decongestant, are close.
When the load is medium (100 clients) and large (180 clients), De-
congestant is able to push the data point close to the desired zone
while the baselines are far away (Primary having low throughput,
and Secondary seeing high staleness).

Similar conclusions can be reached for the trade-off between
latency and data staleness from Figure 6 (b). The lower left corner
is now the ideal area, as it shows small values in both latency
and data staleness. The advantage of using Decongestant is clear,
offering a sweet spot in terms of 80-percentile latency and 80-
percentile staleness.

Figure 7 shows the performance and the data staleness trade-
off in a read-write TPC-C workload (50% reads). Figure 7 (a)
reports the trade-off between the throughput of the Stock Level
transaction and the data staleness, where the upper left corner
is desirable. Figure 7 (b) depicts the trade-off between latency of
Stock Level transactions and data staleness, where the lower left
corner is the target. Decongestant is able to push the data points
toward the desired zone.

4.5 Bounding data staleness

In this section, we discuss the data staleness issue. We make two
claims here:

e Decongestant’s estimation of data staleness, from server—
Status reports, closely aligns with the data staleness
seen by the clients.

e When the maximum data staleness of a secondaries copy
exceeds the threshold set by the clients, the clients of
Decongestant will not see this.

The largest data staleness the clients are willing to accept is
set to 10 seconds, and we measure the staleness seen by clients,
with S workload from Section 4.1.5.

Figure 8 compares the data staleness from serverStatus
to the one seen by the clients, against time elapsed. The work-
load is one run of YCSB-A together with S workload, with. 100
clients. This figure shows that maximal data staleness known by
the Decongestant via MongoDB serverStatus (and used by
Decongestant to detect cases where excessive staleness means
that reads should avoid the secondary nodes), aligns quite well
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Figure 7: Performance and 80-percentile data staleness
trade-off for Stock Level transacts with read-write TPC-C.
(a) shows the trade-off between throughput of Stock Level
transacts and 80-percentile data staleness. The number
above the marks and the size indicates the number of
clients. The upper left corner is the desired area for Decon-
gestant with both large throughput and small data stale-
ness. (b) shows the trade-off between 80-percentile latency
(end-to-end) of Stock Level transactions, and 80-percentile
data staleness. The lower left corner is the target zone for
Decongestant with both small latency and data staleness.

with the data staleness seen by the clients. In some cases, we
can see that the data staleness estimated by the Decongestant
is larger than the ones seen by the clients. This is acceptable, as
the Decongestant records the maximum data staleness among all
secondaries, while the S workload measures the data staleness
on an arbitrary secondary node.

Figure 9 shows that when data staleness of a secondary copy
exceeds the threshold set by the clients, the clients of Decon-
gestant will not see this: Decongestant reacts in time and sends
their reads to the primary. The workload used here is read-write
TPC-C with S workload, on 60 clients. The blue horizontal dashed
line shows the data staleness limit set by the clients, which is 10
seconds. The red squares in the figure depict the maximum data
staleness of the secondaries, which sometimes goes beyond the
threshold. However, the Decongestant clients are protected from
this — all green circles are below their data staleness limit.

We have done a more detailed analysis on the MongoDB inter-
nal diagnostic data, trying to understand what happens behind
this data staleness pattern (Figure 9). The high-level idea is that
when the primary is overloaded, the secondaries trying to read
the oplog from the primary can stall. That is, a secondary has a
cursor open on the primary’s oplog and calls the "getMore" oper-
ation. When the primary is overloaded, it can take a long time to
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Figure 9: Data staleness measured by S workload versus
the max data staleness of the secondaries in Deconges-
tant, with the data staleness limit set to be 10 seconds. The
workload used here is read-write TPC-C with 60 clients.

service this operation, and during that time, the secondary can’t
move forward because it does not know about the newer opera-
tions (i.e., it gets more and more stale). Eventually the primary
gets around to servicing the "getMore" request and sends a large
batch of operations to the secondary. Since the secondary isn’t
overloaded, it can apply the operations quickly and catch up.

Now we discuss how the primary is stalled. During this period,
several checkpoints completed on the primary and the disk of it
was 100% utilised. The checkpoints took a long time to complete
(around 30 seconds on average). During that time the latency
grows. MongoDB had noticed the lag and was deliberately throt-
tling update operations via a mechanism called "flow control"
[27]. This might be part of the reason for the throughput of read-
write TPC-C workload being unstable (Figure 4 (a)). Once the
flush completes, the primary comes back to life and serves a batch
of "getMore" operations quickly.

Our method to bound the data staleness still works reasonably
well when the clients set the data staleness limit to a very low
value, such as 3 seconds (see Figure 10). Such a low data stale-
ness limit is challenging, as the granularity of the data staleness
reported by MongoDB serverStatus is one second. So a sys-
tem has little time to react to increasing staleness before the limit
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is breached. The workload used in Figure 10 is read-write TPC-C
with 200 clients. We can see, in most cases, the client-observed
data staleness are bounded as requested, though two data points
have staleness value 4 seconds.

4.6 Impact of S workload

Lastly, we claim that running S workload alongside a performance
benchmark (such as read-write TPC-C), causes little distortion
on the results recorded for performance. Figure 11 shows the
throughput of Stock Level transactions, when running the read-
write TPC-C workload with the S workload (as it does in our
previous experiments), compared to what is measured when
the read-write TPC workload is run alone. The Read Preference
used here is Primary. We can see that the throughput of the
performance benchmark remains at a similar level when running
with or without the S workload.

5 RELATED WORK

Some text in this section already appeared in [21].

The trade-off between performance and consistency in dis-
tributed storage system has been studied for a very long time.
This body of work is profoundly influenced by CAP theorem [9]
and its later PACELC formulation [1].
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Various storage systems offer different consistency properties.
Some make the choice for the users, such as BigTable [10] and
Spanner [13], which guarantee some form of strong consistency.
Others give users some freedom to make their own decisions,
including Amazon Dynamo [16], Cassandra [30], as well as Mon-
goDB. There is also a trend that Database-as-a-Service is hosted
on top of shared-disks systems (usually provided by large cloud
computing vendors), such as Amazon Aurora [39] and Microsoft
Socrates [3], whose features usually impact on the exposed con-
sistency characteristics of these Database-as-a-Service.

There is a huge amount of work evaluating the behaviour of
distributed storage systems, in order to help users make more
informed choices. Wada et al and Bermbach et al benchmark a
large variety of distributed storage systems from the customers’
view [5-8, 40]. These works treat the distributed storage system
as a black-box, and send read and write requests to it, just like nor-
mal customers would do. Our previous work [20] measured the
inconsistency window between the primary copy and secondary
copies of MongoDB Atlas at around 25 ms.

There are works which, rather than comparing the read and
write results (as client-centric methods do), capture the trace
of operations on various entities (chosen by the user), and then
post-execution analysis determines whether an equivalent serial
execution would give the same result in each read; if not an
anomaly is reported [2, 17, 31].

Trading performance for data freshness for read-only transac-
tions / queries has been explored [11, 18, 33]. For example [33]
applied this idea to mix OLAP and OLTP workloads in a data-
base cluster providing freshness guarantees, though requiring
a central coordinator which sees all transactions. In contrast,
our proposed Decongestant is decentralised, which can be used
both by on-premises and cloud users, and can deduce overload
situations by probing rather than seeing the complete workload.

Pileus is a self-configuring system based on a Service Level
Agreement (SLA) [36]. Within one SLA, there are a few sub-
SLAs. Each subSLA includes a consistency requirement, a latency
bound, and a utility score. Similar to our work, Pileus has "moni-
tors" residing on the client nodes (each client has one monitor),
and these probe periodically to decide which node a reading
request should be directed to, so that the highest utility score
among all subSLAs is achieved. Tuba [4] is an extension for
Pileus. Tuba is a DBMS which is able to reconfigure itself, based
on the observed latency and subSLA hit and miss ratio from
all clients. Possible reconfiguration includes: changing primary
replica, adding or removing secondaries, and varying synchro-
nization periods between the primary and secondary copies.

Some recent work for self-configuring database applies ma-
chine learning technologies. There are automated systems able
to tune large number of database knobs [38], adding and deleting
indices [14], forecasting workloads [32], scaling resources [15],
providing advice on partitioning [19], etc.

6 CONCLUSION

We presented the design and evaluation of Decongestant, a sys-
tem which is able to automatically and dynamically determine
Read Preference settings for read operations in MongoDB, in or-
der to get good performance while delivering fresh-enough data
to clients. Our solution works for both on-premises MongoDB
deployments and MongoDB-as-a-Service. The key innovation is
a client-based way to detect when either the primary, or one of
the secondaries, are congested, by comparing estimates of the



time taken on the relevant server for performing recent read op-
erations. When congestion is detected through these estimates,
the system shifts reads away from the congested server; however,
this decision is also constrained by estimates of the current data
staleness on the secondaries.

This design avoids the need in current practice for application
programmers to hard-code the decision of whether reads should
go to primary or to secondaries (and thus risk seeing stale val-
ues). Instead the decision is made dynamically at run time by
Decongestant, adapting to the recent situation in the servers.

Our experimental evaluation is done with YCSB-A, YCSB-B,
and with workloads that run TPC-C transactions with a balance
between read-only and updating transactions. We showed that
Decongestant is able to adapt to workload shifts as they occur,
and that it delivers good performance that respects client-chosen
limits on data staleness. Indeed, in read-intensive workloads such
as YCSB-B, we can outperform both hard-coded alternatives.

In future work, we plan to look at more sophisticated feedback
control when adjusting read preference, and to support richer
client SLAs as well as maximum staleness. We will explore the
possibility of extending Decongestant to other database systems,
which have a leader-follower architecture similar to MongoDB.
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