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ABSTRACT
Confidentiality is a crucial requirement in financial data exchange
processes. On the one hand, rich microdata is needed for most
AI applications, including banking supervision, anti-money laun-
dering, etc. On the other hand, organizations may not be legally
authorized to see particular data, e.g., personal data. Striking the
right balance provides a number of challenges.

Motivated by our experience with the Central Bank of Italy,
in this work we present Vada-SA, a reasoning-based framework
for financial data exchange with statistical confidentiality. We
present a production-ready and fully engineered framework,
adopting a reasoning approach. The framework includes explicit
consideration of the reasoning process, the business context and
declarative transparency that puts the user in control. We show
and discuss a number of risk measures and anonymization crite-
ria, implemented and operated in practice.

1 INTRODUCTION
Confidentiality in financial data exchange has multiple facets and
touches different business segments of the FinTech area. In open
banking settings, where the increasingly frequent interactions
between financial intermediaries motivated by the unbundling
and rebundling of the banking process sees the interplay of many
actors, each interested in utilizing the data about a specific por-
tion of the process, but with limited or no access-rights to the
identity of the involved customers; in European-level banking
supervision, where data exchange between the European Central
Bank and the National Central Banks needs to reveal situations
that are highly critical in terms of the “financial health” of the
banks, while the identity of the involved customers tends to be
irrelevant; in anti-money laundering, where most modern ap-
proaches pinpoint fraudulent or collusive cases by inspecting
high-level features of the considered actors, without accessing
their identity before any judicial or law-enforcement action au-
thorizes it; in statistical and economic research, with the more and
more common establishment of national “Research Data Centers”,
data archives used by financial authorities that wish to share rele-
vant financial data with universities and research institutes while
keeping personal data reserved. Moreover, it goes without saying
that the GDPR regulation makes the attention to the confidential
transfer of personal data a central topic in Europe.

As a matter of fact, financial and statistical authorities and
intermediaries look at solutions to share their own microdata,
i.e., non-aggregated data at the finest level of granularity, while
striking a good balance between their statistical relevance and the
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need to eliminate any possible trace of personal identities. Many
situations arise in the financial segment in which a counterparty
must at the same time see parts of the data (to carry out a portion
of the process) and must not see other parts which they are not
legally authorized to see, e.g., personal data.

This paper is motivated by our experience with the Central
Bank of Italy, which, in its capacity of national central bank,
banking supervision and oversight authority and Financial Intel-
ligence Unit for Italy, is touched by the problem of confidential
financial data exchange in all its perspectives. In this work, we
present Vada-Sa, the joint effort of the Applied Research Team of
the Bank of Italy, TU Wien and the University of Oxford towards
a reasoning-based approach to the problem.

The desiderata. We start by laying out the main desiderata for
a state-of-the-art financial data exchange solution with confiden-
tiality: (i) It should be context aware and take into consideration
the specific business domain and the characteristics of the in-
volved entities and features to evaluate the risk of a breach of
confidentiality; (ii) At the same time it should be schema inde-
pendent, and operate regardless of the specific dataset structure;
(iii) It should be preemptive, in the sense that it should be able to
analyze a given dataset to be exchanged and provide a confiden-
tiality score beforehand, so that analysts can evaluate the risk
of sharing it; (iv) It should be active, in the sense that whenever
the confidentiality score is over a certain threshold (e.g., statis-
tically inferred or defined by the domain experts), the solution
should be able to alter the data and anonymize them so that the
threshold is respected; (v) It should embody a statistics-preserving
anonymization logic, by removing the minimum amount of in-
formation needed to guarantee confidentiality, while preserving
the statistical soundness and relevance of data; (vi) It should
be fully explainable, meaning that the confidentiality score of a
candidate dataset as well as the reasons for specific anonymiza-
tion choices should be completely understandable to domain
experts; plus it should have a transparent semantics of confiden-
tiality; (vii) It should be business friendly, by being extensible,
IT-independent and at business level, i.e., domain experts should
operate autonomously in defining new scoring criteria as well as
anonymization logic in a high-level non-technical language; (viii)
It should be scalable and able to handle increasing data volumes.

Statistical Disclosure Control. The area of Statistical Disclo-
sure Control [26, 35, 37] (SDC) represents a relevant yardstick for
our work. The SDC approach concentrates on re-identification,
i.e., the possibility for an attacker to cross-link information it
rightfully retains, in particular, every single tuple of a legiti-
mately owned database, with other data sources so as to find
out the underlying identities (of the involved people, companies
and stakeholders in general). SDC adopts quantitative indicators
to take decisions on data sharing by evaluating the risk of re-
identification and balancing it with the measure of the statistical
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relevance of the data, so as to minimize the risk while maximiz-
ing the statistical utility. SDC also studies solutions to transform,
namely anonymize, the data to be shared, balancing confiden-
tiality and statistical relevance. Commonly adopted techniques,
featured by widespread tools such as sdcMicro [9], µ-ARGUS [27],
and ARX [33], aim at removing potential identifiers (sometimes
known as quasi-identifiers) of the disclosed tuples and include
value suppression, aggregation, and generalization.

Unfortunately, the approaches and the tools offered so far
by the SDC community do not fulfill the desiderata of a full-
fledged solution needed by the processes of financial companies
and organizations, like the Bank of Italy. First, to the best of
our knowledge, all the existing SDC techniques are schema de-
pendent and anonymization risk assessment and anonymization
programs are tightly coupled to the dataset structure. Then, SDC
techniques are only based on value statistics within the dataset
to be anonymized and are not context-aware, while it is our
experience that the risk of disclosure highly depends on the char-
acteristics of the source and target databases [18] as well as the
surrounding business information, e.g., availability of specific
cross-linking data, even at tuple level. As a consequence, SDC
techniques tend to fall short of accuracy in this respect. Although
the anonymization techniques of SDC put into action interesting
ideas and, in general, preserve statistical relevance of the datasets,
to the best of our knowledge, all of them lack full explainability,
unacceptable for financial organizations with strong account-
ability constraints. The lack of explainability prevents effective
feedback-based adaptivity and the improvement of disclosure
control proceeds by trial and error. Furthermore, all the existing
tools tend to be not business friendly: they adopt a technology-
and IT-dependent language (e.g., R libraries or Java), often lack
clear semantics (typically only informally explained in the doc-
umentation), require adopters to have a technical background
and are hardly extensible. Finally, such tools are data-scientist
oriented libraries and, while showing good performance, do not
have formal scalability guarantees.
Contribution. In this work we present Vada-Sa, a reasoning-
based framework for financial data exchange with statistical
confidentiality. It is based on our long-term experience in de-
veloping AI-enhanced data-driven solutions revolving around
logic-based reasoning. In particular, this work builds on the Vada-
log System [6], a state-of-the-art reasoning system leveraging
the Vadalog language, a member of the Datalog± family [12],
exhibiting very good characteristics of scalability and expressive
power. In particular, we contribute as follows.
• We present a production-ready and fully engineered frame-
work, Vada-Sa, for financial data exchange with confidential
privacy, adopting a reasoning approach. The enterprise data to
be shared, along with the metadata, are modeled as the exten-
sional component of the reasoning process, whereas standard
risk measures and anonymization methods are modeled as the
intensional component of the process, i.e., a set of Vadalog rules.
The activation of the rules upon the extensional component
—i.e., the reasoning process— produces the derived extensional
component, which is either a fully explained risk measure for a
given dataset to be exchanged or its anonymized version.

• We show and discuss (and through Vada-Sa ship off-the-shelf)
a number of risk measures and anonymization criteria and
illustrate how they can be managed in Vadalog.

• We suggest that the surrounding business context relevant for ac-
curate risk measures is awarely modeled within the intensional
component in terms of Vadalog rules, which are at the same

time schema independent w.r.t. the structure of the datasets.
Although the framework targets financial data as a primary
application, the techniques we present are general and can be
applied in any context requiring statistical confidentiality.

• We envision that the SDC techniques can be used as a solid
theoretical basis to craft a statistically preserving anonymiza-
tion logic, yet, unlike existing approaches, we model in a purely
declarative way in terms of Vadalog rules.

• We embrace a user-delegation approach, in the sense that by
means of a semantically clear, fully declarative, non-technical
and IT-independent language (i.e., characteristics that Vadalog
embodies by design [6]), we delegate specific users to writing
their own criteria and encoding the business knowledge, with
cost and operational savings.

• In our framework, we inherit a set of benefits from logic-based
reasoning. In particular, we refer to the pros of declarative
approaches that, unlike procedural programming, relieve the
users from the need to understand the internals of anonymiza-
tion methods when adopting it. Full explainability is guaran-
teed by standard logic entailment semantics, enforced with
chase-based procedures [20] embodied in Vada-Sa. Finally, the
ideal balance between computational complexity and expres-
sive power inherited from Vadalog, allows Vada-Sa to achieve
very good scalability.

• We discuss an interesting set of real-world risk measures and
anonymization criteria, implemented and operated in practice.

Overview. The remainder of the paper is organized as follows. In
Section 2 we pursue the industrial setting at the Bank of Italy. In
Section 3 we introduce the background about Vadalog. Section 4
presents the Vada-Sa framework and Section 5 shows it in action
in relevant cases from the Bank of Italy. In Section 6 we discuss
some related work and Section 7 concludes the paper.

2 INDUSTRIAL SETTING
The Bank of Italy has recently set up a Research Data Center
(RDC).1 At its core, there are a set of relational databases that
store the microdata, i.e., the operational finest-grained data, from
many core business applications such as the credit risk register,
payment systems, balance of payments, banking supervision
indicators, etc. The ultimate goal of RDC is sharing statistically
relevant information with other cooperating institutions such as
the National Statistical Office, other central banks, the European
Central Bank, universities and research centers. While all these
counter-parties operate within a “circle of trust”, and can thus
access the mentioned microdata, the identities of the involved
entities, be they companies, banks or people, should remain of
the sole responsibility (and therefore visibility) of the Bank of
Italy, which is legally in charge of the respective processing.

The microdata that the RDC deals with regard different busi-
ness processes and originate from multiple sources, usually ex-
ternal to the Bank of Italy. These data are collected with a variety
of methods such as statistical surveys or data flows and are orga-
nized into several microdata DBs, by business domain. The RDC
aims at including 65 microdata DBs with operational data from
1977 to 2020 and expected size of 30-50TB, with a 1TB/month
growth. The RDC currently stores 14 microdata DBs, about fami-
lies and individuals, firms, and historical data, including:

• Household income and wealth
• Household finance and consumption

1The RDC is part of the INEXDA initiative (http://www.inexda.org/) for the ex-
change of granular statistical data.
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I Q Q Q Q Q A A W
Id Area Sector Employees Residential Rev. Export Rev. Exp. to DE Grwth 6mos W

1 612276 North Public Service 50-200 0-30 0-30 30-60 2 230
2 737536 South Commerce 201-1000 0-30 90+ 0-30 -1 190
3 971906 Center Commerce 1000+ 0-30 30-60 0-30 4 70
4 589681 North Textiles 1000+ 90+ 0-30 0-30 30 60
5 419410 North Construction 1000+ 90+ 0-30 0-30 300 50
6 972915 North Other 1000+ 0-30 0-30 30-60 50 70
7 501118 North Other 201-1000 60-90 90+ 90+ -20 300
8 815363 North Textiles 201-1000 60-90 30-60 90+ 2 230
9 490065 South Public Service 50-200 0-30 0-30 0-30 12 123
10 415487 South Commerce 1000+ 0-30 0-30 90+ 3 145
11 399087 South Commerce 50-200 30-60 0-30 30-60 2 70
12 170034 Center Commerce 1000+ 60-90 0-30 0-30 45 90
13 724905 Center Construction 201-1000 0-30 30-60 0-30 2 200
14 554475 Center Other 50-200 0-30 90+ 0-30 0 104
15 946251 Center Public Service 201-1000 30-60 90+ 90+ 150 30
16 581077 North Textiles 50-200 0-30 60-90 30-60 -20 160
17 765562 South Textiles 50-200 0-30 60-90 0-30 -7 200
18 154840 Center Commerce 201-1000 0-30 60-90 0-30 4 220
19 600837 Center Construction 50-200 0-30 60-90 0-30 20 190
20 220712 Center Financial 1000+ 30-60 60-90 30-60 -30 90

Figure 1: Microdata DB about inflation and growth.

• Financial literacy data
• Business outlook of industrial and service firms
• Italian housing market
• Inflation growth and expectations
• Historical archive of Italian credit.

Microdata DBs contain business data, including attributes that
may disclose, directly or indirectly, the identity of the involved
subjects; let us call these subjects respondents, by some abuse of
the terminology adopted for statistical surveys. The risk for a
tuple of a microdata DB to be associated (i.e., “linked”) to the
respective real-world identity of the respondent is named risk of
re-identification. Indeed, the notion of re-identification revolves
around the (realistic) assumption that an external data source
containing all the identities of the respondents exists; let us call
identity oracle such database. The challenge here consists in mit-
igating the risk that an attacker could be able to link the value
of some attributes of a tuple of the microdata DB, with those of
a single tuple (or a very small set thereof) of the identity oracle
and therefore disclose the respondent’s identity.

2.1 Setting Foundations
Let us frame our industrial context with the needed foundations.
Relational Foundations. Let C, N, and V be disjoint countably
infinite sets of constants, (labelled) nulls and (regular) variables,
respectively. A (relational) schema S is a finite set of relation
symbols (or predicates) with associated arity. A term is either
a constant or variable. An atom over S is an expression of the
form 𝑅(𝑣), where 𝑅 ∈ S is of arity 𝑛 > 0 and 𝑣 is an 𝑛-tuple of
terms. A database instance (or simply database) over S associates
to each relation symbol in S a relation of the respective arity over
the domain of constants and nulls. The members of relations are
called tuples. By some abuse of notations, we sometimes use the
terms tuple and fact interchangeably.
The Microdata DB and the Identity Oracle. A microdata DB
is a relation of schema 𝑀 (𝑖, 𝑞, 𝑎,𝑊 ), where 𝑖 is an 𝑛-tuple of
attributes defined as direct identifiers, 𝑞 is an n-uple of quasi-
identifiers, 𝑎 is a set of non-identifying attributes and𝑊 is a sam-
pling weight. An identity oracle is a relation of schema𝑂 (𝑖 ′, 𝑞′, 𝐼 ),

where 𝑖 ′ is a set of direct identifiers, 𝑞′ is a set of quasi-identifiers
and 𝐼 is the identity of the respondent.

• Direct identifiers are attributes s.t. their values (of each single
attribute, separately) allow to determine the identity of the
respondent, that is, for a given tuple of𝑀 , the join between𝑀

and 𝑂 on an attribute of 𝑖 equated to an attribute of 𝑖 ′ selects a
single tuple from 𝑂 and therefore the resulting tuple discloses
the respondent’s identity 𝐼 . Observe that a direct identifier is
a key attribute for 𝑂 and it is assumed that 𝑖 ⊆ 𝑖 ′. Examples
of direct identifiers are the social security number, the Italian
fiscal code, the driving licence number, etc.

• Quasi-identifiers are attributes s.t. the values of two or more of
them, jointly, are likely to disclose the identity of the respondent,
that is, for a given tuple of𝑀 , the join between𝑀 and𝑂 on two
or more attributes of 𝑞 equated to attributes of 𝑞′ selects a small
set of tuples of𝑂 and therefore likely discloses the respondent’s
identity 𝐼 . In other terms, quasi-identifiers are features that
in specific combinations are enough selective to endanger the
respondent’s confidentiality. This selectivity depends on the
attribute (as some are intrinsically more specific) and, of course,
on the combination of values, which can be more or less specific
for a given context. For example, the joint use of age and address
can be quite selective if we refer to a context of small dwellings,
whereas gender and address would be less selective. On the
other hand, occupation-gender is in general not very selective,
whereas it can be extremely discriminating if we are referring
to a context of a survey about gendered jobs in some country.

• Non-identifying attributes are those that do not fall in the two
previous categories. These attributes are not critical because
neither individually nor in combination with others, allow to
disclose the identity of the respondent, i.e., re-identification is
not possible. On the one hand, this can depend on an intrinsic
scarce selectivity of the attribute like in the case of age in a given
context, on the other hand, a non-identifying attribute can be
even intrinsically identifying, yet its value certainly unknown
to the identity oracle. This is the case, for instance, of internal
system identifiers which are useless for re-identification.
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• Context and sampling weight. We have touched on the notion of
context when discussing quasi-identifiers, which are more or
less selective depending on the domain of discourse. The context
can be seen as a selection of tuples from𝑂 based on the domain
of interest. For instance, if we were surveying the population of
Milan, the only tuples of 𝑂 referring to people living in Milan
could be used to attempt re-identification of tuples of𝑀 , thus
making it easier. The sampling weight accounts for the context
by measuring the representativeness of a tuple 𝑡 of𝑀 w.r.t. the
entire context C to which𝑀 refers. In this sense, 𝑅 is a sample
from 𝑂 , and𝑊𝑡 is the tuple sampling weight.
There are different options for defining the sampling weight [7,
22]. The one we take inspiration from is the expected value
of the number of entities having the same characteristics as 𝑡
(according to a similarity function 𝜙) in the sample distribution
of 𝑂 according to a given context C. Given 𝑀 , the weight𝑊𝑡

can be estimated for each tuple 𝑡 from the posterior distribution
of values for 𝑞 among the tuples. Many options are also possible
for 𝜙 and the simplest one just uses equality of quasi-identifiers
attributes. Higher weights denote statistically relevant tuples,
likely carrying scarcely selective attributes; lower weights de-
note statistically less relevant tuples (outliers, as a limit case),
likely with highly selective attributes.

• Identity. The value of such attribute stands for some universally
recognized representation of one respondent’s identity.

In our experience with the Bank of Italy, the categorization of
microdata DB attributes as direct, quasi- and non-identifiers as
well as weight estimation is a hybrid process involving human
experience-based evaluation, learning from training sets, and
domain-based reasoning, as we shall see.

2.2 Towards a Reasoning Framework for
Statistical Disclosure Control

With the depicted context, we can achieve a straightforward
definition of re-identification risk as the probability 𝜌𝑡 = 1/𝑊𝑡 of
re-identifying 𝑡 given the value of all its quasi-identifiers 𝑞. We
can say that, in some sense, provided that𝑂 is an abstraction, the
sampling weight𝑊𝑡 is an estimator for the cardinality of the join
|𝜎𝑡 (𝑀) ⊲⊳𝑞′ 𝑂 |, where 𝜎 denotes the selection and ⊲⊳ the join.

However, re-identification risk is an upper bound for the real
disclosure risk, in the assumption that all quasi-identifiers are
known to a potential attacker. As amatter of fact, for a given tuple
we may be interested in evaluating the risk only wrt a subset
𝑞 ⊂ 𝑞 of quasi-identifiers, the ones we suppose the attacker is
aware of or are more selective. Moreover, we may want to apply
an arbitrary risk weight function 𝜆, which takes as input𝑊𝑡 as
well as the values for quasi-identifiers of 𝑡 . Whence, the following
definition of a general statistical disclosure risk:

𝜌q̂ = 1/𝜆(𝜎𝑞=q̂𝑀) (1)

The function 𝜆 computes an aggregate weight over the tuples se-
lected by q̂ and generalizes many different riskmeasurement tech-
niques, as we shall see, including the re-identification-based risk
(for which 𝜆(𝜎𝑞=q̂𝑅) =

∑
𝜎𝑡∈�̂�=q̂ (𝑅)𝑊𝑡 ), but also k-anonymity [34],

individual risk [7], and SUDA [19].

Use cases. Our industrial goal consists in: 1. evaluating the statis-
tical disclosure risk and, 2. if unacceptable, take actions to counter-
act possible information disclosure, while preserving statistical
significance (anonymization). The joint performance of the two
mentioned actions is known as statistical disclosure control [18].

Figure 2: The attack strategy in action: by querying the
identity oracle along Area, Sector and number of Employ-
ees, an attacker can narrow the search to few candidates
and make a plausible guess about respondents’ identity.

Figure 1 reports a fragment of a microdata DB of the Bank of
Italy RDC, whose data derive from an Inflation and Growth Sur-
vey. This microdata DB shows the percentage growth in the
last 6 months of Italian companies, spanning various sectors,
with a different number of employees, different composition in
revenue (residential viz. export) and a different percentage of
export to Germany. The attributes of the microdata DB are the
direct identifier 𝑖 = {Id}, where 𝐼𝑑 is a unique identifier for a com-
pany, the quasi-identifiers𝑞 = {Area, Sector, Employees, Residenti-
alRevenue, ExportRevenue}, the non identifying attributes 𝑎 =

{ExportToDE,Growth6mos}, and the weight𝑊 = {Weight}.
Re-identification risk is highest for tuple 15 (0.03) and lowest

for tuple 7 (0.003). Extending to general (re-identification-based)
statistical disclosure risk, we have that 𝜌q̂ of a given tuple clearly
coincides with re-identification risk if 𝑞 includes the Id. It is also
the case when 𝑞 includes an n-uple of quasi-identifiers that hap-
pens to be unique. For example, tuple 4 is the only one located
in the North, dealing in the Textiles sector, with more than 1000
employees; therefore, its re-identification and statistical disclo-
sure risk coincide and amount to 0.016. Notice that its weight
(60) witnesses the presence of multiple companies in the identity
oracle having the same characteristics as tuple 4 according to the
similarity function 𝜙 , e.g., the same/similar quasi-identifiers.

In another perspective, we are outlining a possible attack strat-
egy to attempt re-identification of a given tuple 𝑡 (Figure 2): 1.
filter out a set of tuples 𝐶 from 𝑂 that match 𝑡 on the values of
attributes in 𝑞; 2. choose the tuple 𝑟 ∈ 𝐶 that best fits 𝑡 w.r.t. the
other attributes; 3. return 𝑟 with an associated probability/score.
To put the attack strategy into action, the entire toolbox from
the record linkage literature can be adopted [13]. Efficient record
linkage techniques typically operate in two steps: blocking, when
restricting the cohort of candidate matches (step 1 of the attack
strategy); matching, when evaluating the actual correspondences
(step 2). Anonymization techniques aim at making blocking com-
putationally expensive, by suppressing or modifying (as we shall
see) selective values, which would make blocking effective re-
stricting the cluster of candidate matches. With large clusters,
exhaustive comparison is both computationally expensive, and
yields an overly uncertain result, making the attack ineffective.

It is interesting to observe that the sampling weights can be
used as a predictor of the effectiveness of a re-identification at-
tack: tuples with higherweights in𝑀 will be in clusters withmore
candidates and thus less likely be identified, though statistically
relevant; tuples with lower weights will be in smaller clusters
and then will be more easy to re-identify. This gives an optimistic
angle on the problem, as anonymization techniques can try to
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operate on less representative tuples so as to increase overall
confidentiality without hampering the statistical significance.

3 VADALOG REASONING
Vada-Sa, the statistical disclosure control framework we intro-
duce in this paper, is based on the Vadalog system, a state-of-
the-art logic-based reasoner [6] whose core revolves around the
Vadalog language, a member of the Datalog± family [12, 23]. The
disclosure riskmeasurement techniques as well as the anonymiza-
tion logic are expressed in Vadalog.

Datalog± generalizes Datalog with existential quantification in
the rule conclusion, making it suitable for ontological reasoning.
A rule is a first-order sentence of the form ∀𝑥∀𝑦 (𝜑 (𝑥,𝑦) →
∃𝑧𝜓 (𝑥, 𝑧)), where 𝜑 (the body) and𝜓 (the head) are conjunctions
of atoms. For brevity, we omit universal quantifiers and denote
conjunction by comma. As usual in this context, the semantics of
a set of rules is operationally defined by the well-known chase
procedure. Intuitively, the chase satisfies the rules by generating
new head facts for bindings of the body, possibly introducing
new variable symbols in the data, in the form of labelled nulls, in
the presence of existentially quantified head variables [21].

The core of Vadalog is based on Warded Datalog± [6], a syn-
tactic restriction to Datalog± that guarantees decidability and
tractability in the presence of recursion and existential quantifi-
cation. In terms of expressive power, Warded Datalog± captures
full Datalog and OWL 2 direct semantics entailment regime for
OWL 2 QL. The language underpinnings are exploited by the rea-
soner to allow for efficient execution of reasoning tasks. Vadalog
augments Warded Datalog± with supplementary features such
as aggregation, algebraic operations, and stratified negation. As
we shall see, Vadalog is sufficiently expressive to support our
anonymization reasoning scenarios and comprises all the needed
features such as joint use of full recursion, existential quantifi-
cation and aggregation, to model propagation of the disclosure
risk and anonymize values. These requirements are not met by
the standard relational/SQL systems, which in particular offer
inefficient or no support for recursion and existentials.

4 THE VADA-SA FRAMEWORK
While statistical disclosure control has traditionally followed a
procedural approach, we propose a shift towards a fully declara-
tive one, and look at state-of-the-art reasoners, leveraging our
experience on Vadalog and Knowledge Graphs applied to differ-
ent problems in the financial realm e.g., link prediction [2] as well
as schema-independent approaches to model management [3].
The Vada-Sa framework, whose architecture is sketched in Fig-
ure 3, lies on the following basic pillars:
• A structuring of the statistical disclosure control process in the
form of an anonymization cycle.

• The construction of a Vadalog-based enterprise Knowledge
Base (KB) encompassing the patterns and techniques for statis-
tical disclosure risk assessment and anonymization as well as
all the surrounding business knowledge to be leveraged.

• The formulation of risk assessment and anonymization phases
in the form of reasoning tasks upon the KB. In such reason-
ing tasks, the extensional component comprises the microdata
DB as well as their basic metadata, such as schema-level in-
formation. Much care is devoted to the intensional component,
encoding reasoning rules for: attribute categorization, risk as-
sessment and anonymization. The intensional component is at
high level of abstraction, composed of pluggable Vadalogmod-
ules, some of which are provided off-the-shelf while others can

Figure 3: The Vada-Sa architecture.

be autonomously developed by business experts. The overall
statistical disclosure control process is a reasoning task itself,
which relies on the mentioned ones and adaptively chooses the
actions to be performed. The derived extensional component, i.e.,
the results of the reasoning process, contains the outcome of
risk analysis and the anonymized microdata DBs.

In this section, we first illustrate the anonymization cycle and
the metadata dictionary, at the basis of our schema-independent
approach (Section 4.1), we then focus on the evaluation of statis-
tical disclosure risk (Section 4.2) and anonymization (Section 4.3).
Finally, we show extensions and advanced applications involving
complex business knowledge (Section 4.4).

4.1 The Anonymization Cycle and the
Metadata Dictionary

When a microdata DB needs to be shared, it undergoes the
anonymization cycle at the core of the Vada-Sa architecture,
shown in Figure 3. It consists of an iterative application of disclo-
sure risk evaluation and anonymization until the risk is under a
given threshold. Each iteration removes a minimum amount of
information, and checks whether confidentiality requirements
are fulfilled, in a statistics-preserving fashion.

In particular, risk evaluation takes as input a microdata DB.
Based on its category, each attribute has a different treatment.
Direct identifiers must not be disclosed and non-identifying at-
tributes are not needed in the risk evaluation process, thus both
are dropped. Quasi-identifiers and the sampling weight are used
for disclosure risk estimation. Anonymization is activated until
the disclosure risk is acceptable. In so doing, we aim at a trade-off
between statistical preservation and disclosure risk, as captured
by the threshold 𝑇 , determined on the basis of user experience.

Metadata Dictionary and Attribute Categorization. In or-
der to achieve schema and data independence, in Vada-Sa we
follow ameta-level approach and include ametadata dictionary in
the KB. Facts of the form MicroDB(name), Att(microDB, name,
description), Category(microDB,att,cat) are used to reason upon
microdata DBs, their attributes and their categories, respectively.
Figure 4 shows the portion of Vada-Sa dictionary for the “I&G”
(Inflation and Growth) microdata DB. Facts for MicroDB and
Attribute are part of the extensional component and change
when new microdata DBs are added into Vada-Sa. Facts for
Category are part of the derived extensional component: they
are the product of a reasoning process that, for each microdata
DB and each attribute, infers the most suitable category. In fact,
before entering the anonymization cycle, the attributes of the mi-
crodata DB need to be categorized as identifiers, quasi-identifiers
or non-identifying attributes, as we have seen in Section 2.1.
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Algorithm 1 Attribute categorization
(1) Att(𝑀,𝐴) → ∃𝐶 Cat(𝑀,𝐴,𝐶) .

(2) Att(𝑀,𝐴), ExpBase(𝐴1,𝐶), 𝐴 ∼ 𝐴1 → Cat(𝑀,𝐴,𝐶) .
(3) Cat(𝑀,𝐴,𝐶) → ExpBase(𝐴,𝐶) .

(4) Cat(𝑀,𝐴,𝐶1),Cat(𝑀,𝐴,𝐶2) → 𝐶1 = 𝐶2 .

Attribute

Microdata DB Attribute Name Description

I&G Id Company Identifier
I&G Area Geographic Area
I&G Sector Product Sector
I&G Employees Num. of employees
I&G Residential Rev. Rev. from internal market
I&G Export Rev. Rev. from external market
I&G Export to DE Rev. from DE market
I&G Growth Rev. growth last 6 mths
I&G Weight Sampling Weight

Category

Microdata DB Attribute Name Category

I&G Id Identifier
I&G Area Quasi-identifier
I&G Sector Quasi-identifier
I&G Employees Quasi-identifier
I&G Residential Rev. Quasi-identifier
I&G Export Rev. Non-identifying
I&G Export to DE Quasi-identifier
I&G Growth Quasi-identifier
I&G Weight Sampling Weight

Figure 4: Metadata Dictionary: Attribute and Category.

Algorithm 1 shows the Vadalog program adopted for this pur-
pose. It features a recursive application of experience: ExpBase
is the extensional component and stores for an attribute name 𝐴,
a known category 𝐶 , according to available experts’ knowledge.
Assuming one category per attribute (Rule 1), if our attribute
is sufficiently similar (according to a pluggable set of similarity
functions or denoted by the ∼ symbol) to another attribute 𝐴1 of
the experience base for which the category is known, we borrow
that category (Rule 2), and recursively feed the conclusion back
into the experience base (Rule 3), so as to aid other decisions.
Rule 4, technically an equality-generating dependency (EGD),
guarantees that each attribute is assigned one single category.
This Vada-Sa module lends itself to human-in-the-loop inter-
vention in two points: when deciding whether to consolidate a
decision of Rule 2 with Rule 3, as the user may consider a decision
to be use-case specific, and when violations of EGD 4 arise, to
allow for manual inspection of doubtful cases.
Anonymization Cycle. The interplay between evaluation of
statistical disclosure risk and anonymization is at the core of our
framework. Given the input microdata DB, the direct identifiers
are removed and all the potentially harmful combinations of
quasi-identifiers are evaluated to take countermeasures.

Algorithm 2 Anonymization cycle
(1) Val(𝑀, 𝐼,𝐴,𝑉 ),Cat(𝑀,𝐴,𝐶),𝐶 in {Quasi-identifier,Weight},

VSet = munion((𝐴,𝑉 )) → Tuple(𝑀, 𝐼,VSet) .
(2) Tuple(𝑀, 𝐼,VSet), #risk(𝐼 , 𝑅), 𝑅 > 𝑇 → #anonymize(I) .

(3) Tuple(𝑀, 𝐼,VSet), #risk(𝐼 , 𝑅), 𝑅 ≤ 𝑇 → Tuple𝐴 (𝑀, 𝐼,VSet).

The set of Vadalog rules of Algorithm 2 compactly represents
this logic. Rule (1) creates Tuple facts for each tuple of the mi-
crodata DB𝑀 , identified by an artificial identifier 𝐼 , and collects
all the name-value pairs for quasi-identifiers and sample weights
into the VSet variable. Val facts are part of the extensional com-
ponent and store the value 𝑉 for an attribute 𝐴 of the microdata
DB𝑀 . The identifiers of𝑀 are implicitly dropped. Observe that
munion performs such aggregation, for each microdata DB𝑀 and
VSet is a set-type variable. Whenever a specific tuple 𝐼 violates
a [0, 1] risk threshold 𝑇 , a fact anonymize is produced for 𝐼 , in
Rule 2. Both risk and anonymize are atoms defined in external
libraries, in Vadalog (denoted by the “#” prefix). In particular,
risk returns the risk 𝑅 associated to a given tuple 𝐼 ; it is a com-
pact form for the join “#riskInput(𝐼 ), #riskOutput(𝐼 , 𝑅)”, where
riskInput is a fact triggering a Vadalog program producing
facts of riskOutput for 𝐼 . More simply, anonymize produces new
facts for Tuple. This mechanism embeds a recursion on Rule 2,
to anonymize tuples that still do not pass the risk evaluation.
Only those facts for Tuple that pass the risk validation of Rule 3
are copied to Tuple𝐴 , which can be considered anonymized.

The anonymization cycle in Algorithm 2 makes the approach
fully explainable in the sense that each anonymization decision
taken by Rule 2 is motivated by the specific binding of its body.
It is also preemptive and active, in the sense that for each thresh-
old violation, greedily applies a single anonymization step, at
the same time minimizing the amount of suppressed statistical
information. It is schema independent, as only atoms of the meta-
data dictionary are used and there is no specific reference to
either schema or instance objects of the single microdata DBs.
We shall see how specific values are bound to the attributes as a
responsibility of risk and anonymize implementations. Finally,
the algorithm offers multiple degrees of freedom: different risk
and anonymization techniques can be used, and our risk and
anonymize and polymorphic, in this sense; specific optimiza-
tions and execution heuristics can be adopted to choose which
tuples to anonymize first (by controlling the activation order
of Rule 2 against its possible bindings), and to choose which
quasi-identifiers to anonymize first.

4.2 Statistical Disclosure Risk Estimation
Our risk atom in Algorithm 2 is polymorphic. Vada-Sa fea-
tures a plug-in mechanism to opt for specific implementations at
runtime. While the high-level characteristics of the Vadalog lan-
guage allow to delegate users to specify their own risk logic, with
extensive use of business knowledge, a number of techniques are
provided off-the-shelf. In this section, we introduce the main risk
disclosure evaluation techniques offered by Vada-Sa.
Re-identification-based.We start in Algorithm 3with re-identi-
fication-based risk evaluation, that we have defined in Section 2.2.

Algorithm 3 Re-identification-based risk evaluation
(1) Tuple(𝑀, 𝐼,VSet), riskInput(𝐼 ),Cat(𝑀,𝑊 ,Weight),

𝑅 = 1/msum(VSet[𝑊 ], ⟨𝐼 ⟩) → TupleA(𝑅, ∗VSet[AnonSet]).
(2) Tuple(𝑀, 𝐼,VSet),TupleA(𝑅,VSet∗) → riskOutput(𝐼 , 𝑅) .

Whenever a tuple 𝐼 needs to be evaluated (riskInput atom), in
Rule 1, the name𝑊 of the weight atom is retrieved from the
metadata dictionary and used to extract the weight value from
VSet, with the access operator denoted by [𝑋 ], where 𝑋 can be
either a single attribute name or a collection thereof. Weights are
summed (msum) and the risk score 1/𝑅 is computed. TupleA has
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variable arity, and its terms are the computed risk 𝑅 and the set
of quasi-identifiers to group by when forming the summation.
The expression ∗VSet[AnonSet] has the following meaning: the
prefix operator “*” is collection unpacking and turns each element
of the argument collection into a term of TupleA, essential for
grouping along quasi-identifiers. Note that VSet is filtered by a
set AnonSet of attribute names —the order is irrelevant in this
context— that selects those that are considered of interest by
business experts w.r.t. risk evaluation. Rule 2 finds those tuples 𝐼
for which the risk has been computed and returns it. It uses the
packing operator, denoted by the suffix operator “*”, which packs
a sequence of terms of TupleA into the set variable VSet. In this
way, by joining on VSet, we can identify all the tuples to which
the risk computation applies. We have already seen examples of
re-identification-based risk estimation in Section 2.2.
k-anonymity is a commonly used threshold approximation of
re-identification risk estimation [34]. For a given set of quasi-
identifiers, whenever the number of occurrences is less than a
fixed threshold 𝑘 , it is considered dangerous; it is safe otherwise.
For instance, in the microdata DB of Figure 1, considering the
quasi-identifiers Area and Sector , we notice, e.g., that there is
only one occurrence for “North” and “Public Service” (tuple 1).
We say the set of pairs {⟨Area,North⟩, ⟨Sector, Public Service⟩}
is a sample unique for tuple 1. The Vadalog reasoning rules for
k-anonymity are reported in Algorithm 4.

Algorithm 4 k-anonymity
(1) Tuple(𝑀, 𝐼,VSet), riskInput(𝐼 ),

𝑅 = mcount (⟨𝐼 ⟩) → TupleA(𝑅, ∗VSet[AnonSet]).
(2) Tuple(𝑀, 𝐼,VSet),TupleA(𝑅1,VSet∗)

𝑅 = case 𝑅1 < 𝑘 then 1 else 0 → riskOutput(𝐼 , 𝑅).

Individual Risk. In the re-identification model the simplifying
assumption is made that the sampling weight𝑊𝑡 corresponds to
the frequency (number of occurrences) 𝐹𝑘 of a given combination
𝑘 of quasi-identifiers in the total population from which the
microdata DB has been sampled; therefore we can compute the
combination risk as 1/𝐹𝑘 . Yet, frequencies 𝐹𝑘 are unknown and
in general different from𝑊𝑡 . A further inferential step is then
required. The typical approach [7, 22, 38] is accounting for 𝐹𝑘
in a Bayesian fashion, by considering the distribution of the
population frequencies given the sample frequencies 𝐹𝑘 |𝑓q̂ and
obtaining 1/𝐹𝑘 as the posterior mean. In our setting, the sample
frequency is the sample count in the microdata DB. Different
assumptions can be made on the posterior distribution of 𝐹𝑘 |𝑓q̂,
with different techniques to accordingly estimate 𝜌q̂. The one we
adopt here is considering such distribution a negative binomial
and thus we pose 𝜆 =

∑
𝑊𝑡/𝑓q̂ to estimate risk in Equation 1

of Section 2.2. Indeed, other distributions can be adopted. The
individual risk estimation is formalized in Algorithm 5.

Algorithm 5 Individual risk
(1) Tuple(𝑀, 𝐼,VSet), riskInput(𝐼 ),Cat(𝑀,𝑊 ,Weight),

𝐹 = mcount (⟨𝐼 ⟩), 𝑅 = msum(VSet[𝑊 ], ⟨𝐼 ⟩) →
TupleA(𝐹/𝑅, ∗VSet[AnonSet]).

(2) Tuple(𝑀, 𝐼,VSet),TupleA(𝑅,VSet∗) → riskOutput(𝐼 , 𝑅).

While scanning through the tuples having a given combination
VSet, used as a group-by key thanks to the unpacking operator,
Rule 1 counts the occurrences of each combination (frequency)
and sums the contributor weights. Facts for TupleA are produced

only once all the contributors are available. The risk is then
estimated for each combination and finally returned by Rule 2.
SUDA. With k-anonymity, we have introduced the concept of
sample unique, i.e., a set of quasi-identifiers —name-value pair—
that identify a tuple of a given microdata DB, i.e., they are unique.
A sample unique is not the same as a database key, because it
expresses a property that holds at tuple level and not at schema
level. Alongside the schema-level distinction between superkey
and key (a minimal superkey) in relational theory [1], here, at
data level, we introduce the minimal sample unique (MSU) 𝜇𝑡 for
a given tuple, that is a sample unique for which there exists no
other sample unique 𝜇 ′𝑡 for the same tuple, s.t. 𝜇 ′𝑡 ⊂ 𝜇𝑡 . The Special
Unique Detection Algorithm (SUDA) is a heuristic technique that
estimates the statistical disclosure risk of a given tuple based on
the size and the number of its MSUs.

Consider for example the set 𝜇1
20 = {⟨Area,Center⟩, ⟨Sector,

Financial⟩, ⟨Employees, 1000+⟩, ⟨Res. Rev., 30-60⟩} for the micro-
data DB in Figure 1 for tuple 20. It is sample unique though
not MSU, since the set 𝜇2

20 = {⟨Sector, Financial⟩} is sample
unique and s.t. 𝜇2

20 ⊂ 𝜇1
20. Moreover, 𝜇2

20 is MSU. Similarly,
𝜇3

20 = {⟨Employees, 1000+⟩, ⟨Res. Rev., 30-60⟩} is another MSU.
In total, tuple 20 has 2 MSUs.

Algorithm 6 encodes the Vada-Sa version of SUDA.

Algorithm 6 SUDA
(1) Tuple(𝑀, 𝐼,VSet), riskInput(𝐼 ) → TupleI(𝑀, 𝐼,VSet) .

(2) TupleI(𝑀, 𝐼,VSet),Cat(𝑀,𝐴,Quasi-identifier),
𝐴 ∈ VSet → ∃𝑍 Comb(𝑍, 𝐼 ), In(𝐴,𝑍 ) .

(3) Comb(𝑍1, 𝐼 ), TupleI(𝑀, 𝐼,VSet),Cat(𝑀,𝐴,Quasi-identifier),
𝐴 ∈ VSet, not In(𝐴,𝑍1) →

∃𝑍 Comb(𝑍, 𝐼 ), InComb(𝑍, 𝑍1), In(𝐴,𝑍1).
(4) InComb(𝑋,𝑌 ), In(𝐴,𝑋 ) → In(𝐴,𝑌 ).

(5) Comb(𝑍, 𝐼 ), In(𝐴,𝑍 ),TupleI(𝑀, 𝐼,VSet),
ASet = munion(𝐴) → TupleC(𝐼 , ∗VSet[ASet]) .

(6) TupleC(𝐼 ,VSet∗),mcount (⟨𝐼 ⟩) = 1 →
∃𝑆 Su(𝑆,VSet),HasSu(𝐼 , 𝑆).

(7) Su(𝑆,VSet),HasSu(𝐼 , 𝑆), not HasSu(𝐼 , 𝑆1),
Su(𝑆1,VSet′),VSet′ ⊂ VSet → MSU(𝐼 , 𝑆) .

(8) TupleI(𝑀, 𝐼,VSet),MSU(𝐼 , 𝑆), Su(𝑆,VSet),
𝑅 = case size(VSet) < 𝑘 then 1 else 0 → riskOutput(𝐼 , 𝑅) .

After restricting the focus on input tuples (Rule 1), for each tu-
ple we generate all the combinations of quasi-identifiers, first
by introducing a combination 𝑍 for each of them (Rule 2), and
then by constructing all the possible extensions that can be ob-
tained by adding other quasi-identifiers (Rules 3 and 4). Then,
for each combination of quasi-identifiers, generated by unpack-
ing (Rule 5), we generate sample unique facts for Su, denoting
those combinations that exactly identify one single tuple. The
predicate HasSu is needed since every tuple 𝐼 can have multi-
ple sample unique sets, while the mcount aggregation needs to
group by VSet. Rule 7 creates facts for MSU, filtering only those
sample unique sets that are minimal. Finally, Rule 8 implements
the logic to handle minimal sample unique sets. In this case, we
evaluate the size of every MSU and if it is above a given threshold
𝑘 , we consider the input tuple dangerous and thus return 1. The
assumption here is that we cannot accept that the number of
quasi-identifiers that can disclose the identity is too small. Clearly,
more sophisticated checks could be implemented, possibly also
including an overall evaluation of all the MSUs for a given tuple,
for example by comparing the average size of MSUs against a
threshold.
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(a)

I Q Q Q Q
Id Area Sector Employees Residential Revenue F

1 099876 Roma Textiles 1000+ 0-30 1
2 765389 Roma Commerce 1000+ 0-30 2
3 231654 Roma Commerce 1000+ 0-30 2
4 097302 Roma Financial 1000+ 0-30 2
5 120967 Roma Financial 1000+ 0-30 2
6 232498 Milano Construction 0-200 60-90 1
7 340901 Torino Construction 0-200 60-90 1

(b)

I Q Q Q Q
Id Area Sector Employees Residential Revenue F

1 099876 Center ⊥1 1000+ 0-30 5
2 765389 Center Commerce 1000+ 0-30 3
3 231654 Center Commerce 1000+ 0-30 3
4 097302 Center Financial 1000+ 0-30 3
5 120967 Center Financial 1000+ 0-30 3
6 232498 North Construction 0-200 60-90 2
7 340901 North Construction 0-200 60-90 2

Figure 5: Local suppression and global recoding.

4.3 Smart Anonymization
In Algorithm 2 we have introduced the anonymization cycle,
where Rules 2 and 3 show the interaction between risk estima-
tion, with the main techniques introduced in Section 4.2, and
anonymization, the object of this section. Tuples whose risk is
considered over a given threshold𝑇 , produce facts for anonymize,
which polymorphically triggers dedicated Vadalog programs:
for each tuple 𝐼 having statistical disclosure risk 𝑅 > 𝑇 , a new fact
for Tuple is produced, with the same identifier 𝐼 and statistical
disclosure risk 𝑅′ < 𝑅. The process continues recursively, until
there is no tuple violating the threshold.

All the statistical disclosure evaluation techniques of Sec-
tion 4.2 compute the risk associated to each tuple with monotonic
aggregations, which play an important role here. In particular,
all of them (e.g., msum in Algorithm 3, mcount in Algorithm 4,
etc.) take as input the aggregation contributor, denoted by ⟨𝐼 ⟩.
According to the monotonic aggregation semantics [6], whenever
two or more tuple tuples having the same value for the contrib-
utor 𝐼 are aggregated (e.g., summed, counted, etc.) within the
same group (defined by the bindings of head variables), only the
tuple providing the least risk contribution is considered, while
the others are neglected. This implies that, whenever a tuple
𝐼 is replaced by a “more anonymous version”, for example by
suppressing a quasi-identifier, as we shall see, as the two are seen
as the same contributor (they have the same value for 𝐼 ), only
the anonymized one will be accounted for in the aggregation, so
that more anonymized tuples incrementally replace the others
and reduce risk, until convergence is achieved. We anonymize
tuples with two main techniques: introducing labelled nulls to
replace selective values, applying a global recoding.
Local Suppression with Labelled Nulls. Labelled nulls are a
powerful tool from logic-based reasoning, which we effectively
apply in the anonymization context. Consider the microdata DB
in Figure 5a, where all the attributes are assumed to be quasi-
identifiers, the sampling weight is omitted for simplicity, and
the frequency of the n-uple of quasi-identifiers is showed on the
right. For tuple 1 the set {⟨Area, Roma⟩, ⟨Sector,Textiles⟩,
⟨Employees, 1000+⟩, ⟨Resid. Rev., 0-30⟩} is sample unique. What
if we replace the value “Textiles” for Sector with a labelled null
⊥1? As we are not aware of the underlying value of ⊥1, the
combination of quasi-identifiers at hand may match with any
among tuples 2-5, thus leading to a total frequency of 5. Likewise,
tuples 2-5 see their frequency increased to 3. In total, by adding a
single labelled null and hence introducing some degree of uncer-
tainty, we have highly decreased the statistical disclosure risk of
the microdata DB, as it can be seen in Figure 5b. In fact, a tuple

containing one or more nulls may match with different tuples of
the microdata DB, or even with none of them, depending on the
specific assignment for those nulls.

Going back to what introduced in Section 2.2, in our frame-
work in order to estimate the statistical disclosure risk, we need
to compute 𝜆(𝜎𝑞=q̂𝑀) over a selection of the microdata DB 𝑀 ,
based on an n-uple of values q̂ for quasi-identifiers. The risk esti-
mation techniques of Section 4.2 apply 𝜆 to the entire microdata
DB and the selection is implicit in the grouping performed by
the aggregations, in the sense that, for each tuple, the aggrega-
tion forms the group by selecting only those tuples having the
same values for quasi-identifiers (or subset of interest, thereof).
So, 𝑀 (𝑖 ′, 𝑞′, . . .) is included in the selection induced by tuple
𝑀 (𝑖, 𝑞, . . .) iff (𝑞′1, . . . , 𝑞

′
𝑛) = (𝑞1, . . . , 𝑞𝑛), and, by construction,

the groups form a partition of the microdata DB. If we allow 𝑞𝑖
to be a labelled null, a new semantics must be adopted to define
whether 𝑞𝑖 = 𝑞′

𝑖
and thus form the aggregation groups.

The introduction of nulls raises non-trivial semantic issues
when aggregations are involved, and theoretical work is still
needed to achieve sound characterizations [25]. In Vada-Sa, for
the construction of aggregation groups, we adopt a null-tolerant
semantics inspired by the so-called maybe-match approach [14],
and assume that 𝑞𝑖 =⊥ 𝑞′

𝑖
holds if: (i) 𝑞𝑖 and 𝑞′𝑖 have the same con-

stant value, or (ii) either 𝑞𝑖 or 𝑞′𝑖 is a labelled null. Consequently,
(𝑞′1, . . . , 𝑞

′
𝑛) =⊥ (𝑞1, . . . , 𝑞𝑛) holds iff 𝑞𝑖 =⊥ 𝑞′

𝑖
holds for every

1 ≤ 𝑖 ≤ 𝑛. The =⊥ relation is therefore used, instead of standard
equality, to form groups. A tuple containing null quasi-identifiers,
as a result of anonymization steps, is assigned tomultiple aggrega-
tion groups (which do not partition the microdata DB anymore),
increasing their cardinality and so anonymity.

We now have all the ingredients ready to encode local sup-
pression, an anonymization method where quasi-identifiers are
replaced by labelled nulls to reduce the statistical disclosure risk.
The technique is expressed by Algorithm 7.

Algorithm 7 Local suppression
(1) Tuple(𝑀, 𝐼,VSet), anonymize(𝐼 ),Cat(𝑀,𝐴,Quasi-identifier),
VSet[𝐴] is not null → ∃𝑍 Tuple(𝑀, 𝐼, (𝐴,𝑍 ) ∪ (VSet \ (𝐴, _))).

For a tuple 𝐼 that needs to be anonymized, as witnessed by the
predicate anonymized, for a not null quasi-identifier 𝐴, we gen-
erate a new tuple, where it is replaced by a labelled null 𝑍 .
Global Recoding. While local suppression introduces nulls, an-
other technique to control statistical disclosure risk consists in
decreasing the granularity of the values on the basis of domain
knowledge. Consider again Figure 5a. Tuples 6 and 7 have the
following sample unique sets, respectively: {⟨Area,Milano⟩ ,
⟨Sector,Construction⟩},{⟨Area,Torino⟩, ⟨Sector,Construction⟩}
and therefore have high disclosure risk. Besides the basic meta-
data dictionary we have seen in Section 4.1, the Vada-Sa KB
contains knowledge about the attribute domains as well as the
mutual relationship between their values. For instance, for the
attribute Area, the KB comprises the following information:
Att(I&G,Area). TypeOf (Area,City) . SubTypeOf (City, Region).
InstOf (Milano,City) . InstOf (Torino,City) .
InstOf (North, Region) . IsA(Milano,North) . IsA(Torino,North).

The Area attribute is known to be of Type “City”, which in
turn is a SubtypeOf “Region”. Moreover we know that Milano
and Torino are instances of cities and North is an instance of
region. Finally, we now that both Milano and Torino are in the
North. Similar knowledge is present for the entire geography.
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Algorithm 8 Global recoding
(1) Tuple(𝑀, 𝐼,VSet), anonymize(𝐼 ),Cat(𝑀,𝐴,Quasi-identifier),

TypeOf (𝐴,𝑋 ), subTypeOf (𝑋,𝑌 ), isA(VSet[𝐴], 𝑍 ),
TypeOf (𝑍,𝑌 ) → Tuple(𝑀, 𝐼, (𝐴,𝑍 ) ∪ (VSet \ (𝐴, _))) .

The logic for global recoding is in Algorithm 8. For a tuple that
needs to be anonymized, we consider a quasi-identifier 𝐴. Based
on its type, we climb the hierarchy up to its direct super-type
𝑌 . Then for the value VSet[𝐴] of 𝐴, we use the corresponding
value 𝑍 of 𝑌 to replace VSet[𝐴]. This form of suppression can be
effectively applied to the entire microdata DB (and in this sense
it is “global”) and is inherently recursive as multiple hierarchical
roll-ups may be needed to guarantee anonymity.

4.4 Enhancing Anonymization
We conclude the section by discussing two advanced topics: em-
bedding of complex business knowledge, where we showcase the
use of domain experience for context aware anonymization, and
implementation of runtime heuristics, to maximize the statistical
effectiveness of our approach.
Embedding complex business knowledge. The overall ano-
nymization process can largely benefit from the surrounding
business knowledge, an aspect often neglected by dedicated tools.
Thanks to reasoning, we can inject business representations into
different phases of Algorithm 2: in risk estimation modules, to
craft ad-hoc methods; into anonymization techniques, e.g., to opt
for specific values for global recoding, and so on. The setting we
show here, motivated by our experience in the Bank of Italy with
financial networks, consists of taking into account the relation-
ships that exist between the respondents, say 𝑋 and 𝑌 . It is in
fact common that the statistical disclosure risk propagates along
linked entities, e.g., companies or people, so that being able to
re-identify one, makes it easier to re-identify others. In essence,
all the linked entities of a given cluster, have the same disclosure
risk, obtained as the probability that at least one entity of the
cluster is re-identified: 1 −∏

𝑐 (1 − 𝜌𝑐 ), where 𝜌𝑐 is the risk of
an entity, calculated with one of the techniques in Section 4.2.
Here, along the lines of what usually done to estimate the risk of
households and hierarchical structures [26], re-identification risk
is interpreted as the re-identification probability.

Now, types of links that can be considered are arbitrarily com-
plex: finding members of the same family, companies of the same
company group are examples. The latter, e.g., could be encoded
by the following Vadalog rules: (1) Own(𝑋,𝑌,𝑊 ),𝑊 > 0.5 →
rel(𝑋,𝑌 ). (2) rel(𝑋,𝑍 ),Own(𝑍,𝑌,𝑊 ),msum(𝑊, ⟨𝑍 ⟩) > 0.5 →
rel(𝑋,𝑌 ). Clusters of companies (rel(𝑋,𝑌 ) holds where 𝑋 and
𝑌 are in the same cluster) are defined by company control rela-
tionships: if 𝑋 owns more than 50% of the shares of 𝑌 (Rule 1) or
controls a set of companies 𝑍 that jointly own more than 50% of
𝑌 , than 𝑋 controls 𝑌 and thus 𝑋 and 𝑌 are in the same cluster.

Algorithm 9 shows an enhanced version of Algorithm 2, where
the risk for a tuple 𝐼2 is estimated as explained. Specifically, Rule 2
uses #rel (and we assume here rel(𝑋,𝑋 ) holds) to compute the
risk for 𝐼1 as the combined risk of the entities in the same clus-
ter. The aggregation mprod is the monotonic product, which
considers, for each contributor 𝐼2, the maximum contribution
it provides, so as to account for the new less risky anonymized
tuples produced by Rule 3, and eventually triggering Rule 4.
Runtime heuristics. We have seen how Vada-Sa operates in-
crementally and applies anonymization steps, only when tuples
exhibit an overly high statistical disclosure risk. However, there

Algorithm 9 Enhanced anonymization cycle
(1) Val(𝑀, 𝐼,𝐴,𝑉 ),Cat(𝑀,𝐴,𝐶),𝐶 in {Quasi-identifier,Weight},

VSet = munion((𝐴,𝑉 )) → Tuple(𝑀, 𝐼,VSet).
(2) Cat(𝑀,𝐴,𝐶),𝐶 = Identifier,Tuple(𝑀, 𝐼1,VSet1),

Tuple(𝑀, 𝐼2,VSet2), #rel(VSet1 [𝐴],VSet2 [𝐴]), #risk(𝐼1, 𝑅),
𝑅clust = 1 − #mprod (1 − 𝑅, ⟨𝐼2⟩) → Risk(I1, Rclust) .

(3) Tuple(𝑀, 𝐼,VSet), Risk(𝐼 , 𝑅), 𝑅 > 𝑇 → #anonymize(I) .
(4) Tuple(𝑀, 𝐼,VSet), Risk(𝐼 , 𝑅), 𝑅 ≤ 𝑇 → Tuple𝐴 (𝑀, 𝐼,VSet) .

are still various open questions to be addressed, which corre-
spond to specific degrees of freedom in anonymizing microdata.
If there are two or more tuples that violate the risk threshold,
which ones should be anonymized first? Moreover, if there are
two or more quasi-identifiers of the same tuple, which one should
be suppressed or recoded first?

As for the first question, in Vada-Sa, we adopt a greedy ap-
proach and choose to anonymize first the tuples that carry less
statistical significance (namely, data utility), which can be es-
timated on the basis of the sampling weight. We exploit the
so-called routing strategies [5] of the underlying Vadalog sys-
tem to decide which bindings of the rule body to privilege when
multiple possibilities arise. The approach here is quite intuitive:
a “less significant first” strategy sorts the bindings of Rule 2 by
risk and guides the anonymization accordingly.

The second question, namely the prioritization of quasi-identi-
fiers, requires more care. We have seen in Algorithms 7 and 8 that
either an existential or a higher-level domain value is used to re-
place quasi-identifiers and the specific attribute to consider is cho-
sen as a consequence of the binding ofCat(𝑀,𝐴,Quasi-identifier).
Also in this case, we can prioritize bindings by adopting a Vada-
log routing strategy and the greedy approach. In particular, a
“most risky first” strategy would first bind the rules against the at-
tributes that affect more the tuple-level disclosure risk. So, in this
case, the strategy itself would rely on a Vadalog program com-
puting the risk, in order to take informed decisions. For instance,
consider the problem of anonymizing tuple 1 of Figure 5a. Apply-
ing local suppression on Sector removes any sample unique of
the tuple, which then occurs with frequency 5; instead, applying
local suppression on Area, e.g., would leave the value “Textiles”
for Sector, and would then require further local suppressions un-
til such attribute is removed, with a consequential loss of data
utility. In other terms, a greedy approach to local suppression or
global recoding sustains the preservation of data utility.

5 EXPERIMENTS
Vada-Sa has been fully implemented and engineered in the Vada-
log System. Towards a production application of the framework
for the Research Data Center of the Bank of Italy, the system
has been extensively experimented on real-world datasets from
the Bank of Italy and synthetic ones to assess its anonymization
capability (Section 5.1) and scalability (Section 5.2). The schema
independent approach makes the framework general purpose
and suitable for treating datasets in any domain.

Datasets. The microdata DBs used in the experimental analysis
are reported in Figure 6. The real-world and realistic datasets
derive from the Inflation and Growth Survey of the Bank of Italy,
whose schema is shown in Figure 1. The synthetic datasets have
been generated by fitting the real-world distribution (denoted
by “W” in the figure) or by inducing specific unbalanced or very
unbalanced distributions (denoted by “U” and “V”). Unbalanced
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Dataset No. Att. No. Tuples Dist. Data
R6A4U 4 6k U Synth
R12A4U 4 12k U Synth
R25A4W 4 25k W Real-world
R25A4U 4 25k U Realistic
R25A4V 4 25k V Realistic
R50A4W 4 50k W Synth
R50A4U 4 50k U Synth
R50A5W 5 50k W Synth
R50A6W 6 50k W Synth
R50A8W 8 50k W Synth
R50A9W 9 50k W Synth
R100A4U 4 100k U Synth

Figure 6: Datasets used in the experimental settings.

distributions comprise many tuples with very selective combina-
tions of quasi-identifiers, which exhibit high disclosure risk.
Hardware. We employed a memory-optimized virtual machine
with 16 cores and 128 GB RAM on an Intel Xeon architecture.

5.1 Testing Anonymization Capability
We analyzed the capability of the system to detect tuples that
need to be anonymized (i.e., the “risky” tuples).

Reduction of risk vs. loss of information. We applied the
Vada-Sa anonymization cycle to the real-world dataset 𝑅25𝐴4𝑊
with the k-anonymity risk evaluation technique (Section 4.2) and
choosing a risk threshold𝑇 = 0.5. We employed local suppression
anonymization (Section 4.3), with a less significant first runtime
heuristic (Section 4.4). We varied the anonymity threshold 𝑘 from
2 to 5. We adopted two metrics to evaluate the capability of the
system to detect risky tuples: we counted the number of nulls
injected by the local suppression as a result of risk evaluation,
so analyzing how many values the system was able to erase
(Figure 7a); we estimated the loss of information by weighing the
number of erased values (i.e., the injected nulls) by the maximum
total number of values, those of quasi-identifiers of the risky
tuples w.r.t. 𝑇 , that can be theoretically removed (Figure 7b) to
satisfy the k-anonymity requirement. For both the measurements,
we also evaluated the robustness of the approach, by applying the
anonymization cycle to artificial but realistic datasets (𝑅25𝐴4𝑈
and 𝑅25𝐴4𝑉 ) having the same distribution of quasi-identifiers of
𝑅25𝐴4𝑊 , but with an increased number of risky tuples.

The results in Figure 7a confirm what expected: when the
k-anonymity threshold is increased, the anonymization cycle
becomes less tolerant, and more redundancy is required to guar-
antee anonymity, therefore, in absolute terms, more and more
labelled nulls need to be added to suppress specific values. We
also observe that the number of needed nulls linearly grows with
the tolerance threshold, as a consequence of an overall uniform
distribution of values in the adopted combination of 4 quasi-
identifiers. While an average real-world dataset requires less
than 50 labelled nulls for 25𝑘 tuples with a 5-tuples tolerance
threshold, more unbalanced versions require more, while con-
firming the trend. Figure 7b witnesses very good behaviour of
Vada-Sa in terms of statistical preservation. For the real-world
and the mildly unbalanced dataset, the loss of information is
constantly below 20%, in particular between 12% (lower bound
of 𝑅25𝐴4𝑊 ) and 17% (upper bound of 𝑅25𝐴4𝑈 ). For these two
datasets, the constant trends show that when the number of risky
tuples increases, the greedy approach succeeds in removing the
values with a wider risk reduction effect. The loss of information
for the very unbalanced dataset 𝑅25𝐴4𝑉 is clearly higher, 37%,
but it interestingly drops to 13% with less tolerant runs, because

the high number of tuples that are considered risky on differ-
ent combinations of values of quasi-identifiers, collapse in the
k-anonymity comparison, when labelled nulls are introduced: so,
while the number of nulls is high in absolute terms, the loss of
information decreases. This result turns out to be an extremely
positive guarantee of the anonymization capability of Vada-Sa.

Maybe-matching labelled nulls. In this experiment, we want
to assess the effectiveness of the maybe-match semantics, which
we use to compare labelled nulls with one another (and has been
described in Section 4.3), as opposed to the standard semantics of
labelled nulls, such as that adopted in chase-based procedures
(e.g., Skolem chase [11]). According to the standard semantics,
for a quasi-identifier 𝑞𝑖 , we have that 𝑞𝑖 =⊥ 𝑞′

𝑖
holds if: (i) 𝑞𝑖

and 𝑞′
𝑖
have the same constant value, or (ii) both 𝑞𝑖 and 𝑞′𝑖 are

labelled with the same null symbol. We plugged this semantics
into Vada-Sa, used the same real-world and realistic datasets of
Figure 7b and report the number of injected nulls by k-anonymity
threshold in Figure 7c. Also here, the risk threshold 𝑇 = 0.5 has
been used. The figure highlights the proliferation of symbols (the
red lines) that takes place with the standard semantics, which
is in fact unusable in this setting. By contrast, the probabilistic
interpretation of nulls we foster, minimizes the number of labelled
nulls (the light-blue lines, whose zoomed version is in Figure 7a).

Using business knowledge. We show the results of anonymiza-
tion in a real-world setting where anonymization cycle is com-
plemented with a set of Vadalog rules that produce derived
extensional knowledge about control relationships between com-
panies. The rules and the setting have been presented in detail in
Section 4.4. For the test, we adopt the real-world dataset 𝑅25𝐴4𝑊
and its tweaked unbalanced versions, 𝑅25𝐴4𝑈 and 𝑅25𝐴4𝑉 . We
anonymize each of the datasets by estimating the risk with k-
anonymity with 𝑘 = 2 and 𝑇 = 0.5. We measure the number of
nulls injected by local suppression in 5 settings, with increasing
number of inferred control relationships, from 0 to 400.

The results are shown in Figure 7d. With all the datasets, the
number of injected nulls grows with the number of relationships
between entities, which induce bigger and more risky clusters.
The three distributions of the quasi-identifier values differently
interact with the derived relationships: the more unbalanced the
dataset is, the more tuples will be affected by the propagation of
risk of the outliers, resulting into a globally risky dataset, to be
severely anonymized. In real-world tests, relationships disclose
many cases that deserve anonymization (from 9 in the case of
100 relationships to 38 for 400), while the propagation effect is
maximized in the 𝑅25𝐴4𝑉 dataset with an upper bound of 323
injected nulls for 300 relationships.

5.2 Testing Scalability
Given the characteristics of the data at hand to be anonymized,
we need to make sure that our approach scales well. Although
the anonymization cycle, risk estimation and anonymization of
Vada-Sa are expressed in Vadalog, where reasoning is PTIME in
data complexity [6], here we want to investigate on the specific
runtime of the system in different settings.

By dataset size. We tested the scalability of Vada-Sa by increas-
ing volumes, with 4 synthetic datasets (from 𝑅6𝐴4𝑈 to 𝑅100𝐴4𝑈 ),
unbalanced and having a high number of risky tuples. We mea-
sured the elapsed time for the entire anonymization cycle and
also pointed out the sole risk estimation component, with 3 dif-
ferent risk estimation techniques (individual risk, k-anonymity,
SUDA). We used 𝑘 = 2 for k-anonymity, 3 as the MSU threshold
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Figure 7: (a) Number of nulls injected by k-anonymity threshold. (b) Information loss by k-anonymity threshold. (c) Num-
ber of nulls injectedwithmaybe-matching viz. standard labelled null semantics. (d) Number of nulls injected by increasing
number of relationships in settings with explicit modeling of business knowledge. (e) Execution time by dataset size and
risk estimation technique. (f) Execution time by number of quasi-identifiers and risk estimation technique.

for SUDA (see Section 4.3) and 𝑇 = 0.5. We executed each run 5
times and averaged the measurements, for a total of 60 runs.

The results are shown in Figure 7e. All the three groups of
trends confirm that the risk estimation component (dotted lines)
dominate the elapsed time. This is reasonably expected, as the
convergence of our anonymization cycle depends on a positive
evaluation of risk estimation, which is then the bottleneck. The
linear trend confirms the applicability of the approach. In partic-
ular, k-anonymity exhibits a very good behaviour, with elapsed
time between 6 and 192 seconds for 100𝑘 tuples. The limited
cost of estimation can be ascribed to the adoption of monotonic
aggregations, which adopt incremental updates and need not be
recomputed from time to time. Whilst in Algorithm 5 we have
made a simple assumption to estimate the risk from the posterior
distribution 𝐹𝑘 |𝑓q̂ (which would have led to elapsed times similar
to those for k-anonymity), for this experiment we plugged into
Vada-Sa an off-the-shelf statistical library and sampled from the
actual negative binomial distribution. The costly trend is moti-
vated by the interaction overhead between the native Vadalog
component and the library. The trend for SUDA is less than lin-
ear, with, e.g., 727 seconds for 50𝑘 and 1344 seconds for 100𝑘
tuples since the potential blowup on the number of examined
combinations of quasi-identifiers is controlled by the Vadalog
optimizations.

By number of quasi-identifiers. To investigate more the de-
pendence of performance on the number of quasi-identifiers, we
stressed Vada-Sa by anonymizing 6 datasets 𝑅50𝐴4𝑊 -𝑅50𝐴9𝑊 ,
so with increasing number of attributes and fixed number of
tuples, 50𝑘 , and real-world-like distribution. We used the same
thresholds for k-anonymity, SUDA, and 𝑇 . We measured elapsed

time and the risk estimation component. We executed each run
5 times averaging the results, for a total of 90 runs.

Figure 7f reports the results. As expected, individual risk and k-
anonymity are only marginally affected by the increased number
of quasi-identifiers, as they do not consider all the combinations
with at most 𝑘 attributes, but only those with exactly 𝑘 . Instead,
we may expect a much worse trend for SUDA, where for each
tuple, all the combinations of at most 𝑘 attributes are inspected
to detect potential MSU. Remarkably, no combinatorial blowup
appears in the figure, witnessing a very effective behaviour of
the Vadalog execution optimization: while the activation of
Rules 2-5 of Algorithm 6 could in theory cause a blowup w.r.t. 𝑘 ,
it does not happen in practice because the greedy activation of
Rule 7 performed by Vadalog to detect the MSUs preempts the
generation of redundant combinations of quasi-identifiers.

6 RELATEDWORK
Statistical disclosure control is a broad topic to which many have
contributed, especially from the Statistics community, whose
work can be considered related to ours.

The concept of Sample Uniqueness (SU) to measuring the
risk of data disclosure was introduced by Skinner [35], while
k-anonymity, was first presented by Sweeney [37], along with
the first methods of anonymization by generalization (our global
recoding) and local suppression. The measure of individual risk in
our contribution is inspired by the work of Benedetti and Fran-
coni [7] who proposed to compute the risk of data disclosure
with the sampling weights of data records.

The topic of data anonymization is related to the area of differ-
ential privacy [17], where an interesting concept may be adopted
in our approach so as to develop a new family of risk measures,
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based on the idea that an individual’s privacy may be violated
even knowing the absence of the individual from the microdata.
Investigating such direction will be matter of future work.

While the foundations of our work are set in the theory of
statistical disclosure control, our contribution is concerned with
providing an industrial production ready solution for the Bank
of Italy, conveying a set of properties that derive from a fully
declarative reasoning approach. In this sense, we combine our
experience in logic-based reasoning [6] and schema-independent
solutions to model management problems [3]. None of the exist-
ing dedicated software solutions for statistical disclosure control
offers the mentioned set of properties. The software pack AR-
GUS [27] aims at local suppression and coding, as does the Datafly
system [36]. Manning et al. introduce SUDA2 (Special Unique
Detection Algorithm) [29], whose objective is to detect the risk
in certain unique combinations of variables. Recently, the R pack-
age sdcMicro has implemented many of the risk measures and
anonymization approaches of our interest [9]. Likewise, ARX
is a solution for data anonymization that has been proposed
as a practical approach to Statistical disclosure control [33]. A
comprehensive survey of the statistical approaches has been
provided by Matthews and Harel [30]. Recent work on the risk
of information disclosure in linked data, and, more in general,
ontology-based data, has formalized the problem and defined its
logical foundations [8], with an interest in the concept of linkage
safety in RDF graphs [24]; a declarative framework for linked
data anonymization has also been proposed [15]. The problem
of preserving privacy in data exchange has been analyzed also
in the context of information integration systems [31] where a
practical solution is represented by MapRepair [10] and in the
cryptography community, with homomorphic encryption [28].

In the AI literature, statistical disclosure control has been
mostly considered within machine learning [16] and deep learn-
ing approaches [4]. Yet, they have a different focus and aim at
generating anonymized clones of existing datasets while respect-
ing the original statistical properties. An interesting deductive
proposal by Øhrn and Ohno-Machado uses Boolean reasoning for
data anonymization in databases [32], which however remains
purely theoretical and just considers the combinatorial aspect.

7 CONCLUSION
In this paper, we presented Vada-Sa, a declarative statistical
disclosure control framework. We demonstrated the anonymiza-
tion workflow, metadata dictionary, and statistical disclosure
risk estimation. Utilizing these components, we introduced the
anonymization cycle. To maximize the statistical effectiveness of
our approach, we also presented two enhancements, namely em-
bedding of complex business knowledge and runtime heuristics.
We validated the approach on real-world central bank data. As
future work, we plan to further enhance the framework, and test
it in a variety of other real-world scenarios.
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