
Conversational OLAP in Action
Matteo Francia

DISI — University of Bologna, Italy
m.francia@unibo.it

Enrico Gallinucci
DISI — University of Bologna, Italy

enrico.gallinucci@unibo.it

Matteo Golfarelli
DISI — University of Bologna, Italy

matteo.golfarelli@unibo.it

ABSTRACT
The democratization of data access and the adoption of OLAP in
scenarios requiring hand-free interfaces push towards the cre-
ation of smart OLAP interfaces. In this demonstration we present
COOL, a tool supporting natural language COnversational OLap
sessions. COOL interprets and translates a natural language dia-
logue into an OLAP session that starts with a GPSJ (Generalized
Projection, Selection and Join) query. The interpretation relies
on a formal grammar and a knowledge base storing metadata
from a multidimensional cube. COOL is portable, robust, and
requires minimal user intervention. It adopts an n-gram based
model and a string similarity function to match known entities
in the natural language description. In case of incomplete text
description, COOL can obtain the correct query either through
automatic inference or through interactions with the user to dis-
ambiguate the text. The goal of the demonstration is to let the
audience evaluate the usability of COOL and its capabilities in
assisting query formulation and ambiguity/error resolution.

1 INTRODUCTION
Following the spreading of analytic tools, a heterogeneous plethora
of data scientists is accessing data. However, the gap between data
scientists and analytic skills is growing since different types of
data require to learn specialized metaphors and formal tools (e.g.,
SQL language to query relational data). Natural language inter-
faces are a promising bridge towards the democratization of data
access [13]. Rather than demanding vertical skills in computer sci-
ence and data architectures, natural language is a native “tool” to
organize and provide meaningful questions/answers. Interfacing
natural language processing (either written or spoken) to data-
base systems opens to new opportunities for data exploration and
querying [9]. Actually, in the area of data warehouse, OLAP (On-
Line Analytical Processing) is an “ante litteram” smart interface,
since it supports the users with a “point-and-click” metaphor to
avoid writing well-formed SQL queries. Nonetheless, the pos-
sibility of having a conversation with a smart assistant to run
an OLAP session (i.e., a set of related OLAP queries) opens to
new scenarios and applications. It is not just a matter of fur-
ther reducing the complexity of posing a query: a conversational
OLAP system must also provide feedback to refine and correct
wrong queries, and it must have memory to relate subsequent
requests. A reference application scenario is augmented business
intelligence [6], where hand-free interfaces are mandatory.

In this demo paper, we propose COOL to convert natural
language into COnversational OLap sessions composed of GPSJ
queries and analytic operators. GPSJ [8] is the main class of
queries used in OLAP since it enables Generalized Projection,
Selection and Join operations over a set of tables. Although some

© 2021 Association for Computing Machinery. Published in Proceedings of the 24th
International Conference on Extending Database Technology (EDBT), March 23-26,
2021, ISBN 978-x-xxxx-xxxx-x/YY/MM on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

Speech-
to-Text

OLAP
operator

Full query
Disambiguation
& Enhancement

Execution &
Visualization

Automatic
KB feeding

Manual KB
enrichment KB

DW

Raw
text

Annotated
parse forest

Parse
tree

Metadata
& valuesSynonyms

Log
Interpretation

Offline

Online

Synonyms

Ontology

SQL
generation

SQL

Sales by
Customer and

Month
Parse tree

Statistics

Figure 1: System overview.

Product

Name

Type
Category

Family

Customer

C.City

C.Region
Gender

Store

S.City

S.Region

Date

Quarter

Month
YearStoreSales

StoreCost
UnitSales

Sales

Figure 2: Sales cube in the DW.

natural language interfaces to databases have already been pro-
posed [3], this is the first proposal addressing a full-fledged im-
plementation for OLAP analytical sessions that is:

• Automated and portable: by reading metadata (e.g., hier-
archy structures, measures, attributes, and aggregation
operators) from a ROLAP engine, COOL automatically
builds the minimal lexicon involved in the translation.

• Robust to user inaccuracies in syntax, OLAP terms, and
attribute values, by exploiting metadata and implicit in-
formation.

• Extendable and easily configurable on a data warehouse
(DW) without a heavy manual definition of the lexicon.
The minimal lexicon is extendable by importing known
ontologies in the Knowledge Base.

COOL’s initial proposal in [4] has been now extended by (1) im-
plementing a full-fledged application that supports a complete
OLAP session rather than a single query; and (2) providing a
visual metaphor based on the Dimensional Fact Model (DFM)
[7] to guide user interaction (Figure 2 conceptualizes a multidi-
mensional cube with the DFM formalism). Noticeably, the user
interface’s effectiveness has been assessed with 40 users, includ-
ing data scientists and master students with varying skill levels.

The goal of the demonstration is to let the audience evaluate
the usability of COOL and its capabilities in assisting query for-
mulation and ambiguity/error resolution. The system is publicly
available at https://big.csr.unibo.it/cool.

2 SYSTEM OVERVIEW
Figure 1 sketches a functional view of the architecture. Given
a set of multidimensional cubes (DW), we distinguish between
an offline phase (to initialize and configure the system) and an
online phase (to enable the user interaction). We refer the user
to [7] for an explanation of the DW terminology.

Demo

Series ISSN: 2367-2005 646 10.5441/002/edbt.2021.74

https://OpenProceedings.org/
http://dx.doi.org/10.5441/002/edbt.2021.74

2.1 The offline phase
The offline phase automatically extracts the set of entities E, i.e.,
the DW-specific terms used to express the queries. Such informa-
tion is stored in the knowledge base (KB), which relies on the DFM
expressiveness [7]. This phase runs only when the DW undergoes
modification (e.g., cube schemas or data instances) and extracts
all multidimensional metadata. A cube modeled as a star schema
in a ROLAP engine consists of dimension tables (DTs: the cube
hierarchies) and a fact table (FT: the cube). The Automatic KB
feeding extracts measures (FT columns not included in the pri-
mary key), attributes (DT columns), values (distinct instances of
the DT columns), and hierarchies (either coded in a specific table
or inferred [10]). These elements represent the lexicon necessary
to translate natural language into conversational sessions. COOL
supports lexicon extension with external synonyms that can be
automatically imported from open data ontologies (e.g., Wordnet
[11]) to widen the understood language. Besides the domain-
specific terminology, the KB also includes the set of standard
terms that are domain independent and that do not require any
feeding (e.g., group by, where, select). Further enrichment can
be optionally carried out manually when the application domain
involves a non-standard vocabulary (e.g., the physical names of
tables and columns do not match a standard vocabulary).

2.2 The online phase
The online phase runs every time a natural language query is
issued. In a hand-free scenario (e.g., [5]), the spoken query is
initially translated to text by the Speech-to-text software mod-
ule. Since this task is out of our research scope, we exploited the
public Web Speech API (https://wicg.github.io/speech-api/). The
uninterpreted text is then analyzed by the Interpretation step,
refined in the Disambiguation & Enhancement step, translated
by the SQL generation step, and finally executed and visualized
by the Execution & Visualization step.

2.2.1 Interpretation. Interpretation consists of two alter-
native steps. Full query interprets the texts describing full
queries (which happens when an analytic session starts). OLAP
operatormodifies the latest query when the user states an OLAP
operator along a session (i.e., roll-up, drill-down, and slice&dice).
The switch between the two steps to manage the conversation
(i.e., a dialog between the user and COOL) is modeled by two
states: engage and navigate.

• Engage: this is the initial state, in which the system ex-
pects a full query to be issued and whose interpretation
is demanded to Full query. When COOL achieves a suc-
cessful interpretation (i.e., it is able to run the query) it
switches to the navigate state.

• Navigate: the dialogue evolves by iteratively applying
OLAP operators that refine the query (e.g., by aggregat-
ing by different levels or narrowing the query selectiv-
ity). The management of these steps is demanded to OLAP
operator until the user resets the session, making COOL
return to the engage state.

Full query and OLAP operator follow these steps: (i) Tokenization
& Mapping, (ii) Parsing, and (iii) Checking & Annotation.

Tokenization & Mapping. A raw text 𝑇 is a sequence of
single words 𝑇 = ⟨𝑡1, ..., 𝑡𝑧⟩. The goal of this step is to identify
the entities in𝑇 , i.e., the only elements that will be involved in the
Parsing step. Turning a text into a sequence of entities means
finding a mapping between words in 𝑇 and E.

Definition 2.1 (Mapping & Mapping function). Amapping func-
tion𝑀 (𝑇) is a partial function that associates sub-sequences (or
𝑛-grams)1 from 𝑇 to entities in E such that:

• sub-sequences of 𝑇 have length 𝑛 at most;
• the mapping function determines a partitioning of 𝑇 ;
• a sub-sequence 𝑇 ′ = ⟨𝑡𝑖 , ..., 𝑡𝑙 ⟩ ∈ 𝑇 (with |𝑇 ′ | ≤ 𝑛) is
associated to an entity 𝐸 if and only if 𝑆𝑖𝑚(𝑇 ′, 𝐸) > 𝛼

(where 𝑆𝑖𝑚() is a similarity function, later defined) and
𝐸 ∈ 𝑇𝑜𝑝𝑁 (E,𝑇 ′) (where 𝑇𝑜𝑝𝑁 (E,𝑇 ′) is the set of 𝑁 en-
tities in E that are the most similar to 𝑇 ′ according to
𝑆𝑖𝑚(𝑇 ′, 𝐸)).

The output of a mapping function is a sequence𝑀 = ⟨𝐸1, ..., 𝐸𝑙 ⟩
on E that we call a mapping.

The similarity function 𝑆𝑖𝑚() is based on the Levenshtein dis-
tance and keeps token permutation into account to make similar-
ity robust to token permutations (e.g., sub-sequences ⟨𝑃 ., 𝐸𝑑𝑔𝑎𝑟 ⟩
and ⟨𝐸𝑑𝑔𝑎𝑟,𝐴𝑙𝑙𝑎𝑛, 𝑃𝑜𝑒⟩ must result similar).

Several mappings might exist between 𝑇 and E since Defini-
tion 2.1 admits sub-sequences of variable lengths (corresponding
to different partitionings of 𝑇) and associates the top similar
entities to each sub-sequence. This increases the interpretation
robustness since COOL chooses the best mapping through a
scoring function. Given a mapping 𝑀 = ⟨𝐸1, ..., 𝐸𝑚⟩, its score
𝑆𝑐𝑜𝑟𝑒 (𝑀) (i.e., the sum of entity similarities) is higher when𝑀 in-
cludes several entities with high similarity values. Intuitively, the
higher the mapping score, the higher the probability to determine
an optimal interpretation.

Parsing. Parsing validates the syntactical structure of a map-
ping against a formal grammar and outputs a data structure called
parse tree that is later used to translate a mapping into SQL.

In Full query, Parsing is responsible for the interpretation of
a complete GPSJ query stated in natural language. A GPSJ query
contains a measure clause (MC) and optional group-by (GC) and
selection (SC) clauses. Parsing a full query means searching in a
mapping the complex syntax structures (i.e., clauses) that build-
up the query. Given a mapping 𝑀 , the output of the parser is
a parse tree 𝑃𝑇𝑀 , i.e., an ordered tree that represents the syn-
tactic structure of a mapping according to the grammar from
Figure 3. To the aim of parsing, entities are terminal elements in
the grammar.

In OLAP operator, Parsing is responsible for searching the
syntactic structures of the OLAP operators that build-up the
conversation. The grammar is described in Figure 4. Our conver-
sation steps are inspired to well-known OLAP visual interfaces
(e.g., Tableau2). To apply an OLAP operator, COOL must be in the
state navigate, i.e., a full GPSJ query has been already successfully
interpreted and translated into a parse tree 𝑃𝑇𝐶 that acts as a
context for the operator. The output of the parser is a parse tree
𝑃𝑇𝑀 that is used to update 𝑃𝑇𝐶 (see Section 2.2.3).

Both GPSJ grammars are LL(1)3 [2], not ambiguous (i.e., each
mapping admits, at most, a single parse tree 𝑃𝑇𝑀), and can be
parsed by an LL(1) parser with linear complexity [2]. If the input
mapping𝑀 is fully parsed, 𝑃𝑇𝑀 includes all the entities as leaves.
Conversely, if only a portion of the input belongs to the gram-
mar, an LL(1) parser produces a partial parsing, meaning that it
returns a parse tree including the portion of the input mapping

1The term 𝑛-gram is used as a synonym of sub-sequence in the area of text mining.
2https://www.tableau.com/
3The rules presented in Figure 3 do not satisfy LL(1) constraints for readability
reasons. It is easy to turn such rules in an LL(1) complaint version, but the resulting
rules are much more complex to be read and understood.

647

⟨GPSJ⟩ ::= ⟨MC⟩ ⟨GC⟩ ⟨SC⟩ | ⟨MC⟩ ⟨SC⟩ ⟨GC⟩ | ⟨SC⟩ ⟨GC⟩ ⟨MC⟩ | ⟨SC⟩ ⟨MC⟩ ⟨GC⟩
| ⟨GC⟩ ⟨SC⟩ ⟨MC⟩ | ⟨GC⟩ ⟨MC⟩ ⟨SC⟩ | ⟨MC⟩ ⟨SC⟩ | ⟨MC⟩ ⟨GC⟩
| ⟨SC⟩ ⟨MC⟩ | ⟨GC⟩ ⟨MC⟩ | ⟨MC⟩

⟨MC⟩ ::= (⟨Agg⟩ ⟨Mea⟩ | ⟨Mea⟩ ⟨Agg⟩ | ⟨Mea⟩ | ⟨Cnt⟩ ⟨Fct⟩ | ⟨Fct⟩ ⟨Cnt⟩
| ⟨Cnt⟩ ⟨Attr⟩ | ⟨Attr⟩ ⟨Cnt⟩)+

⟨GC⟩ ::= “𝑔𝑟𝑜𝑢𝑝 𝑏𝑦” ⟨Attr⟩+
⟨SC⟩ ::= “𝑤ℎ𝑒𝑟𝑒” ⟨SCA⟩

⟨SCA⟩ ::= ⟨SCN⟩ “𝑎𝑛𝑑” ⟨SCA⟩ | ⟨SCN⟩
⟨SCN⟩ ::= “𝑛𝑜𝑡” ⟨SSC⟩ | ⟨SSC⟩
⟨SSC⟩ ::= ⟨Attr⟩ ⟨Cop⟩ ⟨Val⟩ | ⟨Attr⟩ ⟨Val⟩ | ⟨Val⟩ ⟨Cop⟩ ⟨Attr⟩ | ⟨Val⟩ ⟨Attr⟩ | ⟨Val⟩
⟨Cop⟩ ::= “ = ” | “ <> ” | “ > ” | “ < ” | “ ≥ ” | “ ≤ ”

⟨Agg⟩ ::= “𝑠𝑢𝑚” | “𝑎𝑣𝑔” | “𝑚𝑖𝑛” | “𝑚𝑎𝑥” | “𝑠𝑡𝑑𝑒𝑣”
⟨Cnt⟩ ::= “𝑐𝑜𝑢𝑛𝑡” | “𝑐𝑜𝑢𝑛𝑡 𝑑𝑖𝑠𝑡𝑖𝑛𝑐𝑡”
⟨Fct⟩ ::= Domain-specific facts

⟨Mea⟩ ::= Domain-specific measures

⟨Attr⟩ ::= Domain-specific attributes

⟨Val⟩ ::= Domain-specific values

Figure 3: Backus-Naur representation of the Full query
grammar. Entities from the KB are terminal symbols.
⟨OPERATOR⟩ ::= ⟨DRILL⟩ | ⟨ROLLUP⟩ | ⟨SAD⟩ | ⟨ADD⟩ | ⟨DROP⟩ | ⟨REPLACE⟩

⟨DRILL⟩ ::= “𝑑𝑟𝑖𝑙𝑙” ⟨Attr⟩𝑓 𝑟𝑜𝑚 “𝑡𝑜” ⟨Attr⟩𝑡𝑜 | “𝑑𝑟𝑖𝑙𝑙” ⟨Attr⟩
⟨ROLLUP⟩ ::= “𝑟𝑜𝑙𝑙𝑢𝑝” ⟨Attr⟩𝑓 𝑟𝑜𝑚 “𝑡𝑜” ⟨Attr⟩𝑡𝑜 | “𝑟𝑜𝑙𝑙𝑢𝑝” ⟨Attr⟩

⟨SAD⟩ ::= “𝑠𝑙𝑖𝑐𝑒” ⟨SSC⟩
⟨ADD⟩ ::= “𝑎𝑑𝑑” (⟨MC⟩ | ⟨Attr⟩ | ⟨SSC⟩)

⟨DROP⟩ ::= “𝑑𝑟𝑜𝑝” (⟨MC⟩ | ⟨Attr⟩ | ⟨SSC⟩)
⟨REPLACE⟩ ::= “𝑟𝑒𝑝𝑙𝑎𝑐𝑒” (⟨MC⟩𝑜𝑙𝑑 “𝑤𝑖𝑡ℎ” ⟨MC⟩𝑛𝑒𝑤 | ⟨Attr⟩𝑜𝑙𝑑 “𝑤𝑖𝑡ℎ” ⟨Attr⟩𝑛𝑒𝑤

| ⟨SSC⟩𝑜𝑙𝑑 “𝑤𝑖𝑡ℎ” ⟨SSC⟩𝑛𝑒𝑤)

Figure 4: Backus-Naur representation of the OLAP
operator grammar. We omit ⟨MC⟩, ⟨Attr⟩, ⟨SSC⟩ in
common with Figure 3.

that belongs to the grammar (i.e., the 𝑃𝑇 rooted in ⟨GPSJ⟩). The
remaining entities can be either singleton or complex clauses that
could not be connected to the main parse tree. We will call parse
forest 𝑃𝐹𝑀 the union of the parse tree with residual clauses. Obvi-
ously, if all the entities are parsed, it is 𝑃𝐹𝑀 = 𝑃𝑇𝑀 . Considering
the whole forest rather than the simple parse tree enables disam-
biguation and errors to be recovered in the Disambiguation &
Enhancement step. Henceforth, we refer to the parser’s output as
a parse forest independently of the presence of residual clauses.

2.2.2 Disambiguation & enhancement. Due to natural lan-
guage ambiguities, speech-to-text inaccuracies, and wrong query
formulations, parts of the text can be misunderstood. The reasons
behind the misunderstandings are manifold, including (but not
limited to) a wrong usage of aggregation operators (e.g., sum-
ming non-additive measures), inconsistencies between attributes
and values in selection predicates (e.g., filtering on product “New
York”), or grouping by a descriptive attribute. Such parts of the
parse forest are annotated as ambiguities. The Disambiguation
& Enhancement step solves ambiguities (if any) automatically
whenever possible (by exploiting implicit information) or by ask-
ing appropriate questions to the user. Through disambiguation,
the parse forest 𝑃𝐹𝑀 is reduced to a single parse tree 𝑃𝑇𝑀 .

2.2.3 SQL generation. SQL generation translates a full-query
parse tree into an executable SQL query. If an OLAP operator
has been submitted, the context parse tree 𝑃𝑇𝐶 must be up-
dated according to the OLAP operator parse tree 𝑃𝑇𝑀 . All the
OLAP operators can be implemented atop the addition/removal
of new/existing nodes in 𝑃𝑇𝐶 . We apply a depth-first search algo-
rithm to retrieve the clauses interested by the OLAP operator. We

recall that adding a new clause to ⟨GPSJ⟩ (e.g., “add city" requires
to add the attribute City) requires to append the new clause to
the existing ⟨MC⟩/⟨GC⟩/⟨SC⟩ (and to create it if it does not exist
in ⟨GPSJ⟩). Given a full query parse tree 𝑃𝑇𝑀 , the generation
of its corresponding SQL requires to fill in the SELECT, WHERE,
GROUP BY and FROM statements. The SQL generation applies to
both star and snowflake schemas [7] and is done as follows:

• SELECT: measures and aggregation operators from ⟨MC⟩
and attributes in the group by clause ⟨GC⟩;

• WHERE: predicates from the selection clause ⟨SC⟩;
• GROUP BY: attributes from the group by clause ⟨GC⟩;
• FROM: measures, attributes, and values identify fact and
dimension tables. The join path is identified by following
the referential integrity constraints.

3 VISUALIZATION METAPHOR
The obtained query is run on the DW and the results are reported
to the user by the Execution & Visualization software mod-
ule. The visual interaction relies on the DFM [7] (Figures 5 and 6),
which natively provides a graphical representation for multidi-
mensional cubes and queries: such representation is conceptual
and user-oriented, and its effectiveness is confirmed by its adop-
tion in commercial tools (e.g., https://www.indyco.com/) for both
modeling and descriptive purposes. With reference to Figure 2,
the DFM explicitly represents the cube as a rectangle (i.e., Sales)
including the measure names (e.g., StoreSales) surrounded by
hierarchies organized in many-to-one acyclic graphs (e.g., Prod-
ucts are grouped in Types). This representation includes all the
elements necessary to formulate a GPSJ query, namely measure
clauses, group-by clauses, and selection clauses on both measures
and dimensional attributes.

At first, users are asked to submit the natural language descrip-
tion of a full query (e.g., “return the medium costs for Beer and
Wine by gender”). Once COOL interprets the natural language
query, it shows in green the entities that are fully-understood
(product_category=Beer and Wine, store_cost(avg), and
gender in Figure 5) and, if no ambiguities exist, it also returns
the query result. If some ambiguities exist, COOL shows in yellow
the ambiguous elements on the DFM one by one. For instance,
when users ask for “average costs in the USA” (Figure 6), COOL
shows that store_cost(avg) is correctly understood, while USA
is ambiguous since it belongs to both attributes store_country
and country. In the case of ambiguities, besides color codes,
COOL notifies the user of the encountered ambiguity and en-
ablesmultiple resolutions (e.g., either picking the correct attribute
or dropping the clause). COOL also shows the parse tree on re-
quest, enabling more skilled users to understand how natural
language is interpreted. After issuing a full query, the conver-
sational session proceeds by describing further analytic steps
(e.g., “generalize product subcategory to category” or more briefly
“generalize product subcategory”).

We tested COOL against the Foodmart [1] cube with 40 users,
mainly master students in data science, with basic or advanced
knowledge of business intelligence and data warehousing. On
a scale from 1 (very poor) to 5 (very high), on average, users
scored 3.60 +− 0.7 their familiarity with the English language,
and 3.28 +− 1.1 their familiarity with the OLAP paradigm. Users
evaluated the responsiveness and user-friendliness of COOL as
4.09 +− 0.85, and the overall user experience (e.g., the perceived
translation accuracy) as 3.82 +− 0.91, confirming a good — or even

648

Figure 5: COOL returns the results for a fully-interpreted query.

Figure 6: COOL shows a hint to disambiguate themember “USA”.

optimal — experience. Finally, the average response time is less
than 1 second for mappings including up to 9 entities.

4 DEMO PROPOSAL
In the demonstration, we develop an experience to showcase the
translation of natural language dialogues into analytical sessions.
In particular, we consider the usability criteria of a visual interface
from [12]. Usability is assessed by learnability (how easily novel
users accomplish basic tasks), efficiency (how quickly users can
perform tasks), error recovery (how many errors users make and
how easily can they recover from these errors), and satisfaction
(how pleasant it is to use the interface). Two distinct scenarios
are proposed to assess these functionalities.

In the guided scenario, we drive the formulation of analytic
sessions on the Sales cube. In particular, we provide users with
three formal definitions of GPSJ queries in the format 𝐺𝑃𝑆 𝐽 =

{{𝐺𝐶}, {𝑆𝐶}, {𝑀𝐶}}; users interact with the system by formu-
lating such queries in natural language. Once the query descrip-
tion is submitted (spoken or written), COOL drives users in the
resolutions of ambiguities, if any, through a question-answer ap-
proach. Then, further analytics steps are shown to the user, who
is required to abstract and describe the operators necessary to
accomplish such steps. In such a way, we address learnability and
efficiency, allowing users to approach COOL in a user-friendly
manner.

In the following unguided scenario, users are to freely interact
with COOL starting only with a generic analytic task (e.g., “Inves-
tigate sales drop. This might depend on examining products sales
over time”). This requires to formulate custom analytic goals and
sessions toward such goals (e.g., sales drop for the category “Beer
and Wine” might be caused by a drop in “Wine” sales). As we

expect users to encounter ambiguities while freely navigating the
cube (e.g., in case of homonyms and synonyms), we address the
robustness of COOL through its error recovery capability. Also,
we assess user satisfaction by understanding how easy it is for
the user to accomplish their analytic goal (i.e., how many steps
it takes).

REFERENCES
[1] [n.d.]. Foodmart. https://github.com/julianhyde/foodmart-data-mysql. Ac-

cessed: 18/01/2021.
[2] John C. Beatty. 1982. On the relationship between LL(1) and LR(1) grammars.

J. ACM 29, 4 (1982), 1007–1022.
[3] Kedar Dhamdhere, Kevin S. McCurley, Ralfi Nahmias, Mukund Sundararajan,

and Qiqi Yan. 2017. Analyza: Exploring Data with Conversation. In Proc. IUI.
ACM, New York, NY, USA, 493–504.

[4] Matteo Francia, Enrico Gallinucci, and Matteo Golfarelli. 2020. Towards Con-
versational OLAP. In Proc. DOLAP@EDBT/ICDT (CEURWorkshop Proceedings),
Vol. 2572. CEUR-WS.org, Copenhagen, Denmark, 6–15.

[5] Matteo Francia, Matteo Golfarelli, and Stefano Rizzi. 2019. Augmented Busi-
ness Intelligence. In Proc. DOLAP@EDBT/ICDT (CEUR Workshop Proceedings),
Vol. 2324. CEUR-WS.org, Lisbon, Portugal, 1–10.

[6] Matteo Francia, Matteo Golfarelli, and Stefano Rizzi. 2020. A-BI+: A framework
for Augmented Business Intelligence. Inf. Syst. 92 (2020), 101520.

[7] Matteo Golfarelli, Dario Maio, and Stefano Rizzi. 1998. The Dimensional Fact
Model: A Conceptual Model for Data Warehouses. Int. J. Cooperative Inf. Syst.
7, 2-3 (1998), 215–247.

[8] Ashish Gupta, Venky Harinarayan, and Dallan Quass. 1995. Aggregate-Query
Processing in Data Warehousing Environments. In Proc. VLDB. Morgan Kauf-
mann, San Francisco, CA, USA, 358–369.

[9] Fei Li and H. V. Jagadish. 2016. Understanding Natural Language Queries over
Relational Databases. SIGMOD Record 45, 1 (2016), 6–13.

[10] Heikki Mannila and Kari-Jouko Räihä. 1994. Algorithms for Inferring Func-
tional Dependencies from Relations. Data Knowl. Eng. 12, 1 (1994), 83–99.

[11] George A. Miller. 1995. WordNet: A Lexical Database for English. Commun.
ACM 38, 11 (1995), 39–41.

[12] Jakob Nielsen. 1993. Usability engineering. Academic Press.
[13] Yu Su. 2018. Towards Democratizing Data Science with Natural Language

Interfaces. Ph.D. Dissertation. UC Santa Barbara.

649

	Demos
	Conversational OLAP in ActionMatteo Golfarelli, Enrico Gallinucci, Matteo Francia

