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ABSTRACT
The detection of duplicates is an essential task in data cleaning
and integration and has steadily gained importance especially for
researchers and practitioners that need to process and integrate
large volumes of potentially unclean data on a daily basis. To
evaluate the quality and performance of duplicate detection al-
gorithms, labeled test data are required that provide information
on the contained duplicates. Current approaches for generating
test data, however, are either not scalable (and therefore limited
to small datasets) or not able to generate realistic data values
and errors, especially outdated values. In this paper, we propose
a scheme for generating test datasets that addresses both these
issues and present a test dataset generated with it. Our approach
relies on using historical data from the North Carolina voter
register which (1) is realistic as it contains actual voter data and
(2) facilitates generating realistic duplicates through the fact that
current data values were collected at every election through man-
ually filled out applications. The generated test dataset comprises
more than 120 million records with up to 90 attribute values
each. To the best of our knowledge, we are the first who provide
realistic test data for duplicate detection at this scale.

1 INTRODUCTION
Duplicates are data records (e.g., tuples in the relational case) that
refer to the same real-world object. They can result from errors in
data management, but also occur because separately developed
data sources overlap in their universes of discourse (e.g., many
actors and movies are stored in both IMDB1 and TMDb2). The
detection of duplicates is an important task in data cleaning [12,
16] and integration [8, 9]. Detecting duplicates is quite simple
when they are exact, i.e. they agree in all of their values. However,
it can be extremely difficult if some of their values disagree due
to typos, phonetic or transformation errors, heterogeneous forms
of presentation as well as missing or outdated values [14].

The challenge of detecting such so-called fuzzy duplicates has
opened up its own field of research and has since been studied
intensively [4, 7, 23, 31]. However, the best approach to find
them strongly depends on (i) the considered domain (e.g., movies,
persons, or proteins), (ii) the characteristics of the given data

1Internet Movie Database: https://www.imdb.com
2The Movie Database: https://www.themoviedb.org
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(e.g., volume, data model and heterogeneity), and (iii) the quality
and cost requirements of the user (e.g., good results vs. short
runtimes and recall vs. precision). Due to the resulting diversity
of use cases, none of the existing algorithms has turned out to
be a generally applicable and superior solution. Instead, in every
use case, it remains a difficult (and expensive) task to choose and
configure them so that they provide adequate results.

Such a configuration process requires the evaluation and com-
parison of different algorithms and parameter settings. This in
turn requires test datasets that do not only provide a gold stan-
dard (a.k.a. ground truth) labeling the dataset’s duplicates [21],
but resemble the required real-life properties as well as possible.
Current approaches to test data generation either (i) struggle
with the generation of realistic data values and errors (especially
outdated values), (ii) cannot guarantee the soundness of the gold
standard3, or (iii) scale badly and thus can only be used to gener-
ate small datasets. However, realistic values and errors as well as
correctly labeled duplicates are an important prerequisite for a
test dataset. Moreover, in times of big data many duplicate detec-
tion algorithms focus on scalability (e.g., [13, 17, 30]) so that an
evaluation of their key functionalities requires large test datasets
with millions of records.

Using a historical dataset to generate test data seems to be a
straightforward solution to some of the aforementioned problems,
because the mapping between records and real-world objects is
part of the data so that the duplicates are already labeled. Thus,
it scales much better than, for example, labeling the duplicates in
an unclean dataset manually. In addition, historical datasets are
perfectly suited to generate outdated values, because these values
are an inherent part of the data. One of these historical datasets
is provided by the State of North Carolina (short NC) [26]. This
dataset contains information on voters registered to the individ-
ual elections and – at the time of our study – consisted of 45
snapshots covering a time period of 16 years with a total number
of over 500 million records and a large schema with 90 attributes.
These numbers make it a perfect candidate to evaluate the suit-
ability of the aforementioned idea, because the large number of
records allows us to generate a test dataset of large size and the
large time span provides us many outdated values (even more
than one for the same object property). Furthermore, since voters
often have to re-register at regular intervals by manually filled
out forms4, the registration data contain typos, values confused
between attributes, heterogeneous forms of presentation and
missing values which makes this dataset particularly useful for

3To clearly distinguish between errors in the duplicate labels and the operational
data, we use the term soundness w.r.t. the correctness of the gold standard.
4https://dl.ncsbe.gov/?prefix=Voter_Registration/

Industrial Paper

 

 

Series ISSN: 2367-2005 570 10.5441/002/edbt.2021.67

https://OpenProceedings.org/
http://dx.doi.org/10.5441/002/edbt.2021.67


the generation of fuzzy duplicates. Finally, its large size gives
us the opportunity to customize the test data to different user
requirements by selecting a suitable subset of all records (the
more data available, the more flexible the selection process). How-
ever, the big amount of redundant data as well as the ongoing
publication of new snapshots also pose some challenges to the
generation process making it a non-trivial task.

The contributions of this paper can be summarized as:
(i) A comprehensive list of desiderata for test datasets for

duplicate detection.
(ii) An approach for generating and storing test data based

on the historical voter register from North Carolina.
(iii) A realistic test dataset generated with our approach.
(iv) An extensive experimental evaluation to analyze the qual-

ity and prove the usability of the generated test dataset.
We provide the generated dataset to other researchers5. It will

help them to evaluate their algorithms (such as runtime behavior
or robustness against a varying number of data errors) and to
compare them with those of other research projects. It is particu-
larly valuable to the research community through a combination
of properties that is unique to the best of our knowledge:

• It contains more than 120 million records and 640 million
duplicate pairs making it suitable to evaluate duplicate
detection algorithms at scale,

• it contains real-life errors of various types including typos,
abbreviations, phonetic errors and outdated values,

• its large size qualifies it to customize the test data to differ-
ent user requirements without losing necessary volume,

• it provides precalculated plausibility and heterogeneity
scores, which support the user to remove (or repair) po-
tentially unsound duplicate clusters and adapt the datas’
heterogeneity to her own requirements, and

• it provides meta information that allows the user to repro-
duce experiments using previous versions of this dataset.

The rest of this paper is structured as follows: In Section 2, we
describe the input to our study, i.e. the voter register from North
Carolina. Thereafter, in Section 3, we discuss several aspects
affecting the test datas’ quality, usability and reproducibility. In
Sections 4 and 5, we describe our approach for using the historical
voter data for test data generation. In Section 6 we present an
experimental study that evaluates the quality and usability of
the generated test dataset. Finally, we discuss related work in
Section 7 before we conclude the paper and give an outlook on
future research in Section 8.

2 NORTH CAROLINA VOTER REGISTER
The voter register from North Carolina was created and is still
maintained by the North Carolina State Board of Elections6 accord-
ing to the Help America Vote Act (HAVA) of 2002. The provided
voter records are considered public information per NC General
Statutes (§132-1, §163-82.10) [1, 25], but do not include dates
of birth, driver’s license numbers and social security numbers
because they are confidential under state law [1, 20, 26].

In addition to current data, the register provides a voter his-
tory in the form of a series of snapshots [24]. The first publicly
available snapshot is from 2005-11-25. New snapshots were (and
still are) created at every New Year’s Day and the date of every
election (general, primary and municipal) [26]. At the time of
our study, the register contained 45 snapshots. The schema of

5Please write an email to dbis-research@informatik.uni-hamburg.de.
6https://www.ncsbe.gov/

Table 1: Overview of the snapshots included in this study

#snap- #total #new rate of new
year shots records records objects records objects

2008 1 9.7 M 9.7 M 9.4 M 100% 96.8%
2009 1 9.7 M 0.7 M 37 K 6.8% 5.6%
2010 2 20.2 M 13.1 M 189 K 64.9% 1.4%
2011 1 10.3 M 2.3 M 225 K 22.2% 9.9%
2012 4 41.8 M 19.9 M 820 K 47.6% 4.1%
2013 1 11.4 M 11.1 M 41 K 97.1% 0.4%
2014 4 47.3 M 7.5 M 432 K 15.8% 5.8%
2015 4 49.0 M 6.6 M 223 K 13.5% 3.4%
2016 4 50.9 M 7.7 M 587 K 15.1% 7.6%
2017 4 54.1 M 3.6 M 245 K 6.7% 6.7%
2018 3 41.7 M 23.7 M 374 K 56.9% 1.6%
2019 7 99.8 M 5.5 M 354 K 5.5% 6.5%
2020 4 60.8 M 8.0 M 596 K 13.1% 7.4%
2021 1 15.9 M 0.8 M 62 K 5.1% 7.6%
total 41 522.5 M 120.8 M 13.57 M 23.1% 11.2%
M = million, K = thousand

these snapshots evolved over time, but was consistent for the
last 41 snapshots. Since the first four snapshots are missing nec-
essary information to clearly identify a voter, we excluded them
from our study. The characteristics of the remaining snapshots
are presented (in an aggregated form) in Table 1. The whole
voter history contains 522,463,029 records representing a total of
13,569,512 distinct persons.

Each snapshot corresponds to a large tab-separated values
(TSV) file. As it turned out during data profiling, these files are
formatted differently. While the older files (if not updated later)
are in UTF-8, the newer files are in UTF-16. Since none of the
provided attributes is expected to contain characters that are not
part of the UTF-8 character set, we converted all files to UTF-8 be-
fore importing them into our dataset. Here it is important to note
that occasional conversion errors do not spoil our test dataset,
since they also happen in real-life, as long as they do not corrupt
the correct mapping between records and objects required for
the gold standard (i.e., they do not concern the NCIDs).

Every record in the snapshot files specifies an entry to the
voter register and consists of 90 attributes. We grouped these
attributes into four semantic categories:

• personal information (38 attributes) such as names, age,
address data, phone number, race code and sex,

• information on the districts the voter is registered in (38
attributes), such as school, water and fire district,

• information on the voter that is closely related to the
election she is registered to (11 attributes), such as voter
status and registration date, and

• meta data for administrating the snapshots and identifying
voters/records within them (3 attributes), which are the
NCID as well as the snapshot and load date.

The NCID is a unique number for each voter currently or
previously registered in North Carolina. A voter’s NCID will
follow him from one county to another when she migrates within
the state of NC. Thus, the NCID can be used to uniquely identify
the individual voters and therefore can serve as an object-id. To
our surprise, we discovered that in every snapshot many voters
are represented by more than one record. A closer look revealed
that at most only one of them has not the voter status removed
(and hence is not outdated). This means that every snapshot
already corresponds to a historical dataset.
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3 TEST DATA DESIDERATA
Before we describe in which way we used the history of the NC
voter register to generate test data in Section 4, we will take a
closer look on the desired properties of such a test dataset. A
suitable test dataset has to ensure a high

• quality, i.e., the test data should enable meaningful evalu-
ation results,

• usability, i.e., the user should be able to customize the test
data according to her requirements, and

• reproducibility, i.e., the user should be able to reproduce
the results of past evaluations that used previous versions
of this dataset in order to achieve adequate comparability.

In the rest of this section, we will discuss these requirements
and the problems that are related with them in more detail. The
way we handled them in our generation process will be described
in the remaining course of this paper.

3.1 Quality
A test dataset is of good quality if its gold standard is sound, its
data contain real(istic) errors of different types and it contains
only few exact duplicates.

3.1.1 Soundness of the Gold Standard. A test dataset for dupli-
cate detection consists of a set of data records and the correspond-
ing gold standard that specifies the duplicate status between the
individual records. While errors in the actual data are quite de-
sirable (see Section 3.1.2), it is extremely important that the gold
standard is sound, because even a small number of incorrectly
labeled record pairs (i.e., false positives and/or false negatives) can
render evaluation results completely useless.

In a perfect world, the mappings between the voter records
and actual voters are sound. However, almost no dataset is free of
errors. Thus, it make sense to perform a soundness check on the
test data because, aswe illustrate in Figure 3, theremay be clusters
whose records do not seem to represent the same voter although
they share the same NCID. Marking those clusters allows the
user to remove or repair them before using the test dataset. Since
we often cannot distinguish between sound and unsound clusters
with absolute confidence, it does not seem wise to use a Boolean
flag as a marker, but to compute similarities which reflect a kind
of likelihood that these clusters are sound (i.e., all their records
represent the same voter). The user can then use these similarities
to decide which risk she wants to take to include unsound clusters
into her test data. We refer to this similarity as plausibility in the
rest of this paper and discuss a calculation of plausibility scores
for the NC test dataset in Section 6.2.

3.1.2 Error Diversity. The results of an evaluation with a test
dataset are only representative if this dataset contains real-life (or
at least realistic) data values and errors. In our case, both are real
because they originate from a real-life dataset. Moreover, users
want to evaluate algorithms that should later be applied to error-
prone data. This requires that the test dataset contains errors of
various kinds and not only outdated values. This includes typos,
abbreviations, invalid values, inconsistencies and different forms
of representation. In other words a test dataset of high quality
has to contain several problems of data quality.

3.1.3 Amount of Exact Duplicates. Another aspect that affects
the usefulness of evaluation results is the number of exact dupli-
cates contained in the test data. The detection of such duplicates
is rather simple and every duplicate detection algorithm – no
matter how primitive – should be able to detect them. Thus if

this number dominates the number of fuzzy duplicates by far, an
accurate detection of the latter becomes less relevant in order to
achieve a good evaluation result. For example, if 90% of all du-
plicate pairs are exact, even the most primitive algorithm would
achieve a recall of 0.9 or higher if it is able to compare values
on equivalence. Moreover, an algorithm that classifies only the
exact duplicates as such and all other pairs as non-duplicates
(precision is 1.0) would even achieve a 𝐹1-score of 0.9 which is
a pretty good result. However those algorithms are completely
useless when it comes to real-life use cases where fuzzy dupli-
cates need to be detected. While this aspect is of little relevance
in many approaches to test data generation (the number of exact
duplicates is usually very small there), it is of great importance
when using historical data, since many of the given snapshots
overlap to a large extent, so that their combination leads to many
exact duplicates. As we will see in Section 4, by simply combining
the individual snapshots of the NC voter register we produced a
relative amount of exact duplicates of over 90%.

The actual definition of an exact duplicate pair is that both
records share the exact same value in every attribute. However,
in the case of the NC voter data, solely removing those duplicates
which are completely identical does not solve this problem, be-
cause often many of the remaining duplicate records only differ
in some minor aspects, such as:

• Meta Data Attributes: Many duplicate records only differ
in some date values, such as snapshot or registration date,
that are less relevant for the duplicate detection process.

• Time-related Attributes: The voters’ age values increase by
one every year and thus cause that some duplicates are no
longer exact, although none of the other characteristics of
the corresponding person changed.

• Whitespaces: Many values contain leading and trailing
whitespaces that are simply to detect and remove by trim-
ming all data values in an initial preparation step.

We describe how we addressed this problem in Section 4.

3.2 Usability
Since we aim to provide test data for duplicate detection at scale,
the resulting dataset should contain several million records. Be-
sides size, the requirements of the individual users can vary from
one evaluation to another. Therefore it is advantageous if the
test data can be adapted to the needs of the respective use case
in terms of several data characteristics, such as the number of
clusters, the cluster sizes, or the degree of heterogeneity (a.k.a.
dirtiness). This can be accomplished by applying a postprocess-
ing step, which selects a subset of all data carefully. Further op-
tions for customization are the removal and merge of attributes,
changing the character of the attributes’ values. A flexible and
unconstrained customization requires that the test dataset con-
tains (i) many duplicate clusters of various sizes and (ii) duplicate
records of different degrees of heterogeneity, so that the user
has a large set to choose from. In addition, it requires that the
user can adjust the characteristics of the test data with relative
ease. This can be supported by storing all records of one cluster
together and providing precalculated heterogeneity scores.

The heterogeneity of the individual duplicate clusters (or du-
plicate pairs) represents the degree to which the duplicate records
differ from each other. At the same time, it can be considered as a
measure on the difficulty of detecting the fuzzy duplicates within
this dataset because duplicates are usually the more difficult to
detect, the more their values differ. Thus, this information does

572



Table 2: Statistical results of the generation process

duplicate cluster size #removed
removal #records #dupl. pairs avg. max. records pairs

no 522.5 M 12,108.2 M 38.50 399 0% 0%
exact 166.3 M 1,225.0 M 12.26 104 68.2% 89.9%
trimming 120.8 M 648.2 M 8.90 77 76.9% 94.6%
person data 58.7 M 136.7 M 4.33 51 88.8% 98.9%
∗The number of objects (i.e., clusters) was always 13.57 M.

not only provide interesting insights into the nature of the test
data, but also allows the user to customize the level of difficulty
of her test dataset individually by filtering out clusters/records
whose heterogeneity is not within a requested range. This can be
useful when the user wants to test her algorithms with datasets
of different degrees of dirtiness. It is important to note that such
filtering can theoretically be performed on any test dataset. How-
ever, only a large number of clusters and records allows the user
to compose arbitrary subsets without running into the problem
of producing a too small output.

3.3 Reproducibility
The NC voter register is subject to constant change and new
snapshots are published regularly. This gives the opportunity to
extend the generated test dataset on a regular basis, too, which
does not only provide data on new voters (i.e., more duplicate
clusters), but also new data on already existing voters (i.e., larger
duplicate clusters and higher degrees of duplicate heterogeneity).
In general, the longer the time span covered by a test dataset,
the more outdated values it contains. Moreover, a longer time
span increases the chance of obtaining outdated values even for
attributes that do not change very frequently (e.g., the last name).

In performance and quality evaluation, reproducibility [27]
(a.k.a. repeatability [28]) is an important aspect because it is
necessary to enable a fair comparison between (the evaluation
results of) different algorithms especially if they are evaluated at
different times by different parties. In this context, reproducibility
means that another evaluation process (or at least its experimen-
tal setting) can be reproduced exactly. This includes the use of
the same test data. Thus, test datasets that change over time pose
a problem for reproducibility, especially if their size does not
allow a separate storage of every intermediate version. To solve
this problem, the datasets must be enriched by information that
allows the user to reconstruct any of the old versions on request.
It is important to note that such a reconstruction does not only
apply to the actual records, but also all meta data (e.g., statistics
and similarities) that are stored to describe them. We discuss how
we ensure reproducibility for our test dataset in Section 5.1.

4 TEST DATA GENERATION
Since every snapshot of the voter register already contains out-
dated records and we wanted to reduce execution time as well as
the number of exact duplicates as much as possible, we started to
experiment with a single snapshot. Because we planned to use as
much data as possible and the size of the snapshots grew mono-
tonically over time, we used the most recent one. At the time of
our analysis, this was the one created at 2021-01-01 and indeed,
among all available snapshots, it contains themost records having
the voter status removed (and thus are potentially outdated). The
total number of records in this snapshot is 15,863,484 (8,308,925 re-
moved) which corresponds to 3.04% of all voter records. However,

the experiments showed that the amount of historical informa-
tion stored in the individual snapshots is rather low compared
to the whole history and thus only provides small clusters (see
Figure 1a). Therefore, we also evaluated the entire voter history
containing all snapshots available. By doing so, we examined a
total of 522,463,029 records.

One of our goals was to analyze the amount of (near) exact
duplicates within the resulting test data. Moreover, we think that
most potential users are only interested in the personal data of
the voters, since the election and district attributes are very case-
specific. Therefore, we executed our approach four times: (i) one
time without removing any duplicates, (ii) one time with remov-
ing all exact duplicates, (iii) one time with removing all duplicates
that were exact after their values have been trimmed (i.e., leading
and trailing whitespaces were deleted), and (iv) one time with
removing all duplicates whose personal data were equivalent
(after trimming attribute values). To check the equivalence of
duplicate records efficiently, we used the Message-Digest Algo-
rithm 5 (short MD5) to calculate a hash value for each record.
A record was then not imported into the test dataset when it
already contained a record with the same hash value. Of course,
collisions between non-exact records cannot be excluded for sure,
but such a collision only means that the test dataset loses a du-
plicate record and thus does not have severe consequences if
it happens a few times7. The input to the hash function is the
concatenation of the values of all relevant attributes to a sin-
gle large string. As mentioned in Section 3.1.3, some meta data
and time-related attributes can reduce the number of near exact
duplicates drastically and therefore were not included into the
concatenation. These attributes are the different dates (snapshot,
load, registration and cancellation) and the age8.

The number of resulting objects (i.e., duplicate clusters), records,
duplicate pairs, the average and maximal number of records per
object (i.e., duplicate cluster size), as well as the number of re-
moved records and duplicate pairs are listed in Table 2. The
number of distinct duplicate clusters (i.e., objects) per cluster
size (i.e., number of records per object) is presented in Figure 1b
(one time for all attributes and one time for the personal data
only). Using a single snapshot did not produce any exact du-
plicate which was even less than expected. In contrast, using
all snapshots produced hundred of millions of exact duplicates.
Obviously, the average number of records per voter decreased
when these exact duplicates were removed (e.g., 8.90 without
whitespaces) and decreased further on when we restricted the
data to the personal attributes (4.33), but was still large compared
to the single-snapshot approach (1.18). In total, the number of
records that were removed because of being exact duplicates was
up to 76.9% and the number of removed duplicate pairs was up
to 94.6% when all attributes where taken into account and up to
88.8% and 98.9% if only person data was considered. These large
amounts of exact duplicates illustrate the importance of their
removal, because otherwise every evaluation of duplicate detec-
tion algorithms using these data would suffer from the effects
described in Section 3.1.3.

To estimate the value of future snapshots, we counted the
number of new clusters (i.e., the snapshot contains an NCID that
7MD5 produces 128 bit hashes, which means that it is relatively unlikely that the
hash values of two different inputs collide.
8In the case of age values, the most obvious solution is to transform them into
years of birth because the latter do not change. However, such a calculation would
enclose a part of the dates of birth, which were originally removed from the data
due to privacy reasons. We have therefore decided to use them only for internal
calculations (e.g., plausibility) and not to store them in the resulting test data.
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Figure 1: Distribution of the number of records per object (i.e., cluster size) after removing exact duplicates (trimming)

was never used before) and new records (i.e., the snapshot con-
tains a record that was not part of any of the previous snapshots)
per snapshot-year. These numbers are presented in Table 1 (note
that the second includes the first). The last two columns show
the percentage of rows that result in a new record (new record
rate) and the percentage of new records that lead to a new cluster
(new object rate). As expected, the number of new clusters and
new records is the highest for the first snapshot. Surprisingly,
the numbers of the following snapshots vary enormously (we ex-
pected an almost constant number). Investigations revealed that
in some snapshots the formats of one or two attributes changed
(e.g., from ‚64TH HOUSE‘ to ‚NC HOUSE DISTRICT 64‘) so that
each of their records were considered to be ‚new‘ even if – apart
from that – they were identical with one of the already existing
ones. This again shows us the importance of providing the user
with an instrument that allows her to filter out records based
on their similarities (see Section 6.5). However, as one can see,
even the last five snapshots contributed a significant amount of
new clusters and records to the test data. Thus, we can expect
the same for future snapshots.

5 TEST DATA STORAGE
The voter history is originally given as a set of TSV files. However,
we want to store our test dataset by using a data model that
is more suitable with respect to its later usage, i.e. to evaluate
duplicate detection algorithms as well as potential extensions
with data from new snapshots. As a consequence, the data model
has to satisfy three essential requirements:

• To customize the test data, we need to select and reduce
duplicate clusters based on user-defined specifications.
Moreover, when we integrate additional snapshot data,
we need to calculate statistics by comparing duplicate
records (e.g., plausibility and heterogeneity). Both require
fast and collective access to all records of the same cluster.

• Every record of the voter data has 90 attributes, but only
a few records have values for district-related attributes.
This means that millions of records have missing values
in at least 38 attributes. Thus, we require the underlying
data model to provide an efficient handling of sparse data.

• Working on hundreds of gigabytes requires scalable soft-
ware solutions.

Schemaless NoSQL data models are much better suited to
store sparse data than the relational model which requires the
definition of a rigid schema. Moreover, many NoSQL data stores

are designed to handle aggregates each of which is a collection of
related data that we wish to treat as a unit [29]. Thus, they allow
an easy and efficient way to access all the records of a certain
person as we need it for customization and future extensions.
Among all the available NoSQL data stores, we decided to use
the document store MongoDB [22]. In contrast to the relational
data model which is aggregate-ignorant, document stores are
strongly aggregate-oriented [29] because they allow to (i) group
records by storing them within the same document and (ii) nest
different documents hierarchically. Furthermore, MongoDB is
highly scalable. Besides its schemaless structure, MongoDB has
three features that are especially helpful for this work [22]:

• Indexes: Since our test dataset contains millions of nested
documents, indexes are very important to efficiently select
those documents from the dataset.

• Aggregation Pipeline: Multi-stage pipelines can be used to
transform documents into an aggregated result. Available
pipeline stages provide tools for filtering, transformation,
grouping and sorting. These pipelines enable users to ex-
tract relevant subsets of the data and thus to customize
their own test datasets.

• Compass:MongoDB has a powerful GUI called Compass. It
enables the user to easily interact with the stored data with
full CRUD functionality. It is very helpful for exploring,
generating, adjusting and using the test data. Moreover, it
allows to monitor load jobs of new snapshots and helps to
identify mistakes at an early stage.

In our case, we created one document for every person (i.e.,
duplicate cluster) that in turn contains a document for every
record of this person (which are grouped into an array) and in
addition a document containing some relevant meta data includ-
ing the hash values of the stored records. Since most users will
be interested in the personal data only, we split every record into
four parts (person, district, election and meta) and stored them
into different subdocuments.

5.1 Future Updates & Reproducibility
The NC State Board of Elections publishes a new snapshot at
every election and every New Year’s Day. Moreover, we have
observed that they published some old snapshots belatedly (e.g.,
the snapshot from 2010-11-02 was first published in May 2019).
To improve our test dataset both in size and heterogeneity, we
will update it regularly.
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Figure 2: Update process for new snapshots and statistics

5.1.1 Update Process. The update process is depicted in Fig-
ure 2 and consists of three steps. The first step corresponds to a
(parallel or sequential) import of one or more new snapshots. In
the second step, current statistics are updated and (if required)
new statistics are calculated. In the last step, a new version num-
ber is associated to the test data, versioning-related meta data
are updated and the new version is published. As illustrated by
this figure, the update process (and thus the creation of a new
version) can be triggered by two reasons:

• new snapshots are available, or
• new statistics are required.

Logically, in the second case, the first step is skipped and the
update process starts immediately with the second one.

5.1.2 Reproducibility. As described in Section 3.3, the import
of new data poses some challenges to the repeatability of eval-
uation processes that were using previous versions of our test
dataset. Since no record is ever removed from the test dataset,
it grows monotonically, which means that the set of all records
of the current version will always be a subset of all records of
every future version. Thus, theoretically, it is sufficient to add
a field to every record which is monotonically increasing with
every new update. This field can be the date of import or the
number of the first version containing this record (the snapshot
date is not suitable because it is not monotonically increasing
due to belatedly published snapshots). To reconstruct an earlier
version, the user can use this field to filter out all records whose
field value is greater than the value of the desired version.

However, we also want to allow users to limit their evaluation
to an arbitrary subset of snapshots (e.g., a certain time interval).
For doing this, we additionally store an array with the dates of
all snapshots containing the corresponding record.

To reconstruct statistics, such as the number of records or
snapshots per cluster, we enriched the meta data of every dupli-
cate cluster by a map that counts how many new records were
inserted per snapshot. The reconstruction of similarity scores is
discussed in Section 5.2.

5.2 Storing Similarity Scores
To support users in customizing their data by (i) removing further
near exact duplicates, (ii) repairing potentially unsound clusters,
and (iii) restricting the data to a certain range of heterogeneity,
we associate every record with three version-similarity maps
(one for plausibility and two for heterogeneity). Every value of
each of these maps corresponds to another map that assigns a
similarity score to each of the previously existing records of the
same cluster. Since the order of these records never change, this
approach does not only avoid expensive recalculations, it also en-
ables reproducibility because existing similarity scores are never
updated or deleted. While the first heterogeneity map takes all
attributes into account, the second is limited to the personal at-
tributes in order to facilitate a customization of personal data9. In
9Note, the plausibility is already limited to personal attributes (see Section 6.2) and
thus does not need to be stored twice.

NCID † last_name first_name midl_name sex age year ⋄

𝑟1 XX001 LARRELL LEWIS ANTWAN MALE 17 2014
𝑟2 XX001 LEWIS LARRELL ANTAWN MALE 18 2015
𝑟3 XX001 LEWIS LARRELL A MALE 22 2018
𝑟4 ZZ002 FIELDS MARY ELIZABETH FEMALE 62 2012
𝑟5 ZZ002 BETHEA JOSHUA ELIZABETH MALE 92 2014

†The NCIDs are pseudonymized for data privacy reasons.
⋄The snapshot year in which this record was collected.

Figure 3: Examples of erroneous and unsound clusters

addition every cluster is associated with three version-similarity
maps storing the aggregated values of their records.

Our understanding of plausibility and heterogeneitymay change
over time and/or we just may want to use other similarity mea-
sures to compute them. The versioning of the similarity scores
protects reproducibility against such future changes, because we
create a new version every time we use a new measure.

6 EXPERIMENTAL EVALUATION
When we explored the snapshots, we noticed several errors
within the data. Some records contain typos, abbreviations, or
have values confused between attributes. Moreover, some no-
tations have changed over time (e.g., ‚1ST CONGRESSIONAL‘
vs. ‚CO. DISTRICT 1‘ or ‚66 AND ABOVE‘ vs. ‚Age Over 66‘).
One example is presented in Figure 3. The first and last names
of at least one record of voter XX001 got mixed up. In addition,
either the middle name of 𝑟1 or 𝑟2 contains a typo (‚ANTWAN‘ vs.
‚ANTAWN‘) and the middle name of 𝑟3 is abbreviated. Remem-
ber that a proper evaluation of duplicate detection algorithms
requires errors of many different types and not just outdated val-
ues. Thus, such real-life data errors are very welcome in our test
dataset, since they challenge the detection of duplicates, but do
not corrupt the gold standard. However, we also detected some
duplicate clusters that contain records that hardly refer to the
same person. An excerpt of one of those examples is depicted in
Figure 3 where the two records 𝑟4 and 𝑟5 share the same NCID,
but obviously describe different persons. Such unsound clusters
are a real threat to the quality of our test data because they spoil
the gold standard and thus will negatively affect every future
evaluation if they remain in the dataset.

In order to evaluate the quality and usability of our test dataset
beyond these first impressions, we conducted a series of experi-
ments, which are described in the rest of this section.

6.1 Evaluated Datasets
To better understand the results of the evaluation of our test
dataset, we compare them with those of three manually labeled
test datasets that are commonly used in the literature. We ac-
quired all three datasets as TSV files10 from the dataset repository
of the Hasso Plattner Institute11.

• Cora: This dataset contains bibliographical information
on scientific papers including title, authors, publisher and
year. The schema of the TSV file consists of 17 attributes
including an artificial id. The file contains 1,878 records
which form 182 clusters.

• Census: This dataset contains personal information includ-
ing name values (first, middle and last), an address and a
zip code per person (6 attributes in total). It contains 841
records which form 483 clusters.

10We used the non-prepared versions where special characters are not removed.
11http://hpi.de/naumann/projects/repeatability/datasets
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Table 3: Characteristics of evaluated datasets

Cora Census CDDB NC1 NC2 NC3
#records 1,879 841 9,763 24,761 22,739 25,530
#attributes 17 6 7 38 38 38
#duplicate pairs 64,578 376 300 19,916 15,993 22,735
#clusters 182 483 9,508 10,000 10,000 10,000
#non-singletons 118 345 221 10,000 10,000 10,000
max. clustersize 238 4 6 7 7 8
avg. clustersize 10.32 1.74 1.03 2.45 2.27 2.55
max. heterog.† 0.63 0.46 0.65 0.25 0.43 0.72
avg. heterog.† 0.171 0.15 0.217 0.106 0.305 0.433
†The presented heterogeneity scores are pair-based.

• CDDB: This dataset includes information on 9,763 music
CDs randomly extracted from freeDB12. In the TSV version
of this dataset, all tracks of a CD are concatenated to a
single string by using the pipe symbol as a delimiter. After
doing so, the schema of this file consists of 7 attributes.
The 9,763 records form 9,508 clusters.

For all three datasets the duplicate information is provided
by a list of pairs. Several characteristics of these datasets are
presented in Table 3. Interestingly, the duplicate distributions of
these sets are quite different. Whereas the Cora dataset contains
very large clusters (up to 238 records) and its average cluster size
is 10.32, the maximal and average cluster sizes of the Census and
CDDB datasets are quite small (1.74 or 1.03 respectively). The
three datasets NC1 to NC3 are described in Section 6.5.

6.2 Plausibility Check
As we have explained in Section 3.1.1, it is very important that
the gold standard of the test data is sound. However, as shown
in Figure 3, we have also seen that this does not always seem
to be the case. To keep the threat of an unsound gold standard
to a minimum, we performed a quality check by calculating a
plausibility score for every pair of duplicate records.

In this plausibility check, we have the basic assumption that all
records of the same cluster are duplicates and the similarity scores
should only reflect (significant) contradictions to this assumption.
Consequently, the similarity measure should compensate simple
errors and differences in data representation as we know it from
duplicate detection algorithms. Due to our basic assumption, this
compensation can be even stricter. Therefore, word confusions
within an single attribute value or between different values as
well as missing or abbreviated values should not reduce similar-
ity at all, because they are more an indication of unknown or
erroneous values than a clear sign of a non-duplicate. Moreover,
to compensate outdated values we should only use attributes
whose values rarely change and that are either very identifying
(i.e., two records with the same value are likely duplicates) or
discriminating (i.e., two records with different values are likely
no duplicates). In our use case, we decided to use:

• the three name values (first, middle and last),
• the sex code,
• the year of birth (which we derived from the snapshot-date
and the age value), and

• the place of birth.
It is not uncommon that values are confused between the three

name attributes. Thus, we computed a single name similarity be-
fore combining it with the similarity scores of the other attributes.
12http://www.freedb.org/

To compensate errors in the name order, but also within the indi-
vidual name values (e.g., typos), we computed the name similarity
by using the hybrid Generalized Jaccard Measure [8] with an ex-
tended version of the Damerau-Levenshtein Similarity [4] as the
internal token similarity measure, i.e.:

𝑠𝑖𝑚name (𝑜𝑖 , 𝑜 𝑗 ) = 𝐺𝑒𝑛𝐽𝑎𝑐𝑐𝐷𝑎𝑚𝐿𝑒𝑣 (𝑛𝑎𝑚𝑒𝑠 (𝑜𝑖 ), 𝑛𝑎𝑚𝑒𝑠 (𝑜 𝑗 )) (1)

where 𝑛𝑎𝑚𝑒𝑠 (𝑜𝑖 ) = {fname(𝑜𝑖 ),mname(𝑜𝑖 ), lname(𝑜𝑖 )}.
The Damerau-Levenshtein Similarity was extended to a proper

handling of missing and abbreviated values. The comparison to
a missing value results in a similarity of 1. The same holds true
if one token is a prefix of the other because in both cases we
do not have any evidence to mistrust the given data. In the case
of the sex code, typos and different representations can almost
be excluded for sure. Thus there are actually only four possibili-
ties: The compared values agree (i.e., 𝑠𝑖𝑚sex = 1), disagree (i.e.,
𝑠𝑖𝑚sex = 0), one of them is undesignated (i.e., it has the value ‚U‘)
or missing. Since we do not have any contradiction in the later
two cases, we set the similarity to 𝑠𝑖𝑚sex = 1, too.

We computed the year of birth (short YoB) as snapshot-date −
𝑎𝑔𝑒 . Since the actual YoB can be one year earlier if the person has
not yet had birthday when the snapshot was made, we introduced
a tolerance of 1. Moreover, we assumed a similarity of 0 if the age
difference was 10 or greater. This led to the following formula:

𝑠𝑖𝑚YoB (𝑜𝑖 , 𝑜 𝑗 ) = 1−min
(
1,
max(0, |YoB(𝑜𝑖 ) − YoB(𝑜 𝑗 ) | − 1)

10

)
(2)

In the case of the place of birth we simply computed the ex-
tended Damerau-Levenshtein Similarity between the two values.
The final similarity score was then calculated as the weighted
average of the previously presented scores where we considered
the name similarity to be more important (weight 0.55) than the
others (each 0.15). A cluster is already unsound, if only one of
its records refers to another voter regardless of how plausible
the other records are actually duplicates. Thus, we computed the
plausibility of a cluster as the minimal plausibility of its records.

We performed our plausibility check on the dataset with 120
million records (exact duplicates were removed after trimming).
The results show that only a few clusters of this dataset are highly
suspicious to be unsound. The average cluster plausibility is 0.988.
91.7% of all clusters (and 93.3% of all duplicate pairs) have the
maximum possible value 1.0. The distribution of the remaining
8.3% (or 6.7% resp.) are presented in Figure 4a. The minimal
plausibility of all clusters (and pairs) is 0.06. 6.4% of all clusters
have a plausibility lower than 0.9, 0.47% (=61,548 clusters) lower
than 0.8 and only 0.0049% (=641 clusters) lower than 0.5. The
pair-based values are similar. As a comparison, the two clusters
from Figure 3 have a plausibility of 0.82 (XX001) and 0.33 (ZZ002)
respectively which matches our intuition that the differences in
the first cluster are probably the result of data errors in the name
values while the second cluster contains obvious non-duplicates.

An appropriate scoring of plausibility heavily depends on the
domain of the data, since we should only use attributes that are
less volatile and are either very identifying or discriminating.
Moreover, it also depends on the quality of the data, since typical
error patterns (e.g., an incorrect encoding of special symbols)
are no significant evidence for an unsound cluster and should
therefore be compensated in the scoring process. It is therefore
difficult to make comparisons between the plausibility of datasets
defined on different schemas without creating any noticeable
bias. For this reason, we decided not to include such a plausibility
calculation for the Cora, Census and CDDB datasets.
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Figure 4: Plausibility and heterogeneity distributions of clusters and duplicate pairs for different datasets

6.3 Duplicate Heterogeneity
To score the heterogeneity between two duplicate records we
want to take all their differences into account and thus do not
actually want to apply measures that compensate them. At the
same time, there are differences that should cause a larger hetero-
geneity than others. For example, difference in upper and lower
case or confusions of tokens are less significant than replacing
the original strings with completely different letters or tokens.

To address the problem resulting from uppercase letters, we
decided to compare every two values one time with and one
time without lowercasing them. To address the problem of to-
ken confusions, we decided to compare every two values one
time with a sequential and one time with a hybrid similarity
measure. Together this results in four comparisons for every
two values. We used the average of the four resulting scores as
final similarity. As the sequential similarity measure, we chose
Damerau-Levenshtein. Since the Generalized Jaccard Measure is
computationally too expensive when working on 90 attributes,
we used the Monge-Elkan Similarity13 [23] as the hybrid mea-
sure instead (using Damerau-Levenshtein as the internal token
similarity measure)14. To calculate the heterogeneity between
two records, we used the weighted average of their inverse value
similarities (i.e., the records are the more heterogeneous, the less
similar they are).

If the resulting heterogeneity scores should reflect any kind of
difficulty to detect the corresponding fuzzy duplicates, identifying
attributes, such as names, should be weighted higher than others.
At the same time and in contrast to plausibility, we want to
compare the heterogeneity (i.e., dirtiness) of different datasets
in order to enable an evaluation of algorithms with respect to
a varying dirtiness of the data. To ensure a fair comparison, no
context knowledge and external expertise should be included
into the scoring process and all necessary information should be
taken from the dataset itself. To accomplish this, we used the same
similarity measure for all attributes and weighted every attribute
by its uniqueness15, where we quantified this uniqueness by
the attribute’s entropy [19]. Since duplicate records distort these
uniqueness scores (e.g., an otherwise unique id can occurmultiple

13Since this measure is non-symmetric, we computed it in both directions and used
the average as final score.
14There are millions of possible similarity measures (including various settings)
and we had to choose one even though this could possibly generate a bias in the
evaluation processes using this test data. However, as illustrated in Section 6.5, this
bias was almost not existing in our experiments.
15To ensure reproducibility, these weights must not change although the dataset
will grow with future updates. We therefore limited their computation to the first 5
million clusters and then hard-coded them into the source code.

times), we initially created a canonical record16 per duplicate
cluster and used them to compute the weights. The heterogeneity
of a cluster was then computed as the average heterogeneity of its
records. Since a consideration of clusters of size one is pointless,
we restricted our analyses to clusters with at least two records.

The results of our analysis are depicted in Figure 4b. They
show that – despite of outdated values and other data errors –
most of the duplicate records are very similar and the dataset as
a whole is quite clean and homogeneous. However, since we re-
moved exact duplicates, almost none of the clusters is completely
homogeneous and most of them have a heterogeneity of around
0.03 (21.6%). In the case of the duplicate pairs, we do not have
such a large peak, but also here you can see, that most values
are in the range between 0.02 and 0.06. Considering this fact, the
average heterogeneity (0.13 for clusters and 0.218 for pairs) is
surprisingly large. The maximal heterogeneity (0.79 for clusters
and 0.88 for pairs) is also very high. As a comparison, the two
clusters from Figure 3 have a heterogeneity of 0.395 (XX001) and
0.366 (ZZ002) respectively. Interestingly, the less plausible cluster
is more homogenous. That is because although cluster ZZ002 con-
tains records referring to different persons, these records form
two very homogenous groups (one with six records similar to 𝑟4
and one with four records similar to 𝑟5).

To score the heterogeneity of the Cora, Census and CDDB
datasets, we used the same settings (i.e., the same similarity
measures and all attributes are weighted based on their entropy).
The pair-based distributions of all three datasets are depicted
in Figure 4c. The heterogeneity scores of the Cora dataset are
almost normally distributed. Most of them have a value of 0.15,
the maximal value is 0.63 and the average is 0.171. The Census
dataset has three peaks at 0, 0.07 and 0.1, a maximal heterogeneity
of 0.46 and an average of around 0.15. In general, except of the
large number of very homogenous pairs, its distribution has
some similarity to this of the Cora dataset, but is less regular. The
CDDB dataset is the dirtiest of them. Its maximal heterogeneity
is 0.65 and its average is 0.217. The high heterogeneity results
primarily from the fact that many language-specific symbols,
such as accents, were incorrectly converted when the dataset
was created. Thus, many duplicate records are very dissimilar
if we do not compensate those irregularities in the matching
process or repair it during preparation.

If we compare these distributions with the one from the NC
dataset, we see that there is only little resemblance to our voter
data although the average of the NC dataset is very close to that

16These records are built by using the most frequent value per attribute.
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Table 4: Statistics of different irregularities within the NC, the Cora and the Census datasets

NC (total 137 M pairs) Cora (total 65 K pairs) Census (total 376 pairs)
most frequent frequency most frequent frequency most frequent frequency

error type example† attribute total in % attribute total in % attribute total in %

si
ng
le
to
n
⋄ outlier age = 5091 age 280 K 0.48 year 20 1.06 last_name 5 0.59

abbreviation midl_name = A. midl_name 7.4 M 12.6 booktitle 1 0.05 middle_name 671 79.8
missing mail_addr3 = null mail_addr3 58.7 M 100 institution 1.7 K 86.8 middle_name 170 20.2

pa
ir
-b
as
ed

★

typo ADELL↔ ADELE midl_name 1.2 M 0.87 title 15 K 22.6 last_name 243 64.6
OCR-error DICOL3↔ DICOLE last_name 1.3 K 0.00 - - - - - -
phonetic WHITE ↔WYATT midl_name 1 M 0.75 title 29 K 44.4 last_name 200 53.2
prefix KIM↔ KIMBERLY midl_name 5.4 M 3.94 volume 19 K 29.1 first_name 65 17.3
postfix BRAGG↔ FORT BRAGG last_name 230 K 0.17 pages 5 K 8.03 street_address 5 1.33
formatting JRS RIDGE ↔ J.R.S RIDGE midl_name 208 K 0.15 title 27 K 42.4 street_address 20 5.32
transp. tokens KIM DUC↔ DUC KIM race_desc 748 K 0.55 authors 202 0.31 - - -
confused values (LUKE, HAL) ↔ (HAL, LUKE) first/midl_name 21 K 0.02 title/booktitle 20 0.03 - - -
integrated value (SUE ANN, null)↔ (SUE, ANN) midl/last_name 244 K 0.18 title/year 4 0.01 - - -
scattered values (NGAN HA, THI) ↔ (NGAN, HA THI) midl/last_name 24 K 0.02 - - - - - -
†Selected from any attribute of the NC dataset.
⋄Singletons are normalized using the total number of records (NC = 58.7 M, Cora = 1,879, Census = 841).
★Pair-based irregularities are normalized using the total number of duplicate pairs (NC = 136.7 M, Cora = 65 K, Census = 376).

of the CDDB dataset. Interestingly, the majority of pairs of the
NC dataset is much cleaner than those of the other three datasets,
but it has also a higher percentage in the range between 0.4 and
0.7. Thus, our dataset contains many homogenous records, which
may need some additional pollution (see Section 8). However, as
we will show in Section 6.5, its large dispersion allows us to easily
achieve an average heterogeneity of 0.433 (which is significantly
higher than this of the CDDB dataset) by adjusting the voter data
based on the precalculated heterogeneity scores.

6.4 Diversity of Error Types
To allow an extensive evaluation of the capabilities of duplicate
detection algorithms, we chose source data whose collection pro-
cess promises many different types of errors. To test this assump-
tion, we conducted a statistical analysis on the personal attributes
of our test dataset by searching for several kinds of irregularities
within these data (see Table 4). Here, we distinguished between
irregularities that can be identified by analyzing single records
(so-called singletons) and ones that can only be detected by com-
paring two duplicate records (so-called pair-based irregularities).
In the first case, we evaluated every record individually leading
to a frequency that can be normalized using the total number of
records. In the second case, we compared every two duplicate
records, counted the number of times the individual irregularities
occur and normalized them using the total number of duplicate
pairs. Moreover, we distinguished between irregularities that con-
cern a single attribute and those that concern multiple attributes
(record-level). We evaluated the following singletons:

• outlier: A value that is outside a predefined range (e.g.,
age > 110) or contains a character that is unusual for its
associated domain (e.g., the first name ‚X ÆA-12‘)17.

• abbreviation: A value that consists of a single letter, possi-
bly followed by a punctuation mark.

• missing: A value that is null, an empty string or any other
value indicatingmissing information (e.g., ‚-‘ or ‚unknown‘).

As pair-based irregularities, we analyzed:
• typo: Two values whose lowercase versions differ only in
one character or contain a character transposition. These

17Note that not every outlier corresponds to an actual data error.

are exactly those values having a Damerau-Levenshtein
distance of 1. In order not to interpret a complete replace-
ment of one value by the other as a typing error, we only
considered values longer than two characters.

• OCR-error: Two distinct string values which only differ
at those positions where one of them has a digit. If both
characters are digits, they need to be identical.

• phonetic error : Two values that are not identical after re-
moving non-letter characters, are both longer than two
and have the same Soundex code.

• prefix/postfix: Two values where one of them is a prefix/-
postfix of the other after removing a potential punctua-
tion mark from the end of the shorter value. Such pre-
and postfix situations indicate abbreviations or forgotten
token/characters.

• different formatting: Two values that only differ in non-
alphanumerical characters (e.g., a hyphen, space or punc-
tuation mark between tokens).

• transposed tokens: Two values whose token sets are identi-
cal, but their token order is different.

• confused values: Two records whose values are confused
between two different attributes (e.g., the first and last
name of one record are transposed).

• integrated value: Two records where in one of them the
value of one attribute is integrated into another (e.g., a
middle name stored as a second token in the first name).

• scattered values: Two records having the same set of tokens
assigned differently to two attributes. To avoid possible
overlaps with the previous two types, we only counted
scattered values that are not integrated or confused.

Obviously some of these irregularities overlap (or sometimes
even include each other) so that we counted some errors for
more than one type. For example, some OCR-errors are also
typos. Moreover, it is important to note that we consider these
irregularities as indications of particular error types, but cannot
always classify them with absolute confidence. For instance, not
every two distinct values that have the same Soundex code are
an actual phonetic error. This also applies to irregularities on
record-level. Not every assignment of the same value to different
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attributes corresponds to a mistake. For example, in the U.S., it is
not atypical to take the old last name as the middle name when
getting married. Such a constellation can therefore also indicate
an outdated record instead of a data entry error. Nevertheless, the
errors are real even if their assignment to the individual typesmay
be disputed. It should also bementioned that our definitions of the
individual error types do not cover them completely so that our
analysis was not able to find every actual error. For example, OCR
errors that do not contain digits (e.g., ‚Tim‘ vs. ‚Tirn‘) were not
recognized as such. However, despite these minor inaccuracies,
we think that our experiment provides a good overview of the
wide variety of different error types contained in the voter data.

The results of this analysis are presented in Table 4 (grouped
by singletons and pair-based irregularities), were we list the
absolute values in combinationwith their percentages. To achieve
greater comparability, we also evaluated the Census and the Cora
datasets. We selected the Census dataset because it has a similar
domain as our voter data and selected the Cora dataset because
it has similarly large clusters. As we can see, the percentages of
the Census and the Cora datasets are much higher than those
of the NC dataset. For example, the percentage of typos in the
attribute last_name of the Census dataset is 65%. This means
that out of 376 duplicate pairs, 243 differed in this attribute by
only one character or had two consecutive characters transposed.
Although the percentages of the NC dataset are much smaller
than those of the Cora and the Census datasets, the absolute
numbers are many times larger. This shows the potential for
customizing smaller datasets with higher error percentages, but
still containing million of records. Moreover, the NC dataset
contains irregularities that are (almost) not contained in the Cora
and Census datasets. Examples are OCR-errors or errors that
affect more than one attribute.

6.5 Usability
There are various ways to customize a test dataset by using
the precalculated heterogeneity scores. In our experiments, we
sketched a very simple approach and let the development of more
sophisticated approaches to the user (or future research resp.).
This approach consists of three steps. In the first step, we defined
a lower and an upper bound ℎ⊥ and ℎ⊤ for the heterogeneity
scores. In the second step, we randomly selected 100,000 clus-
ters from our whole dataset, scanned over all records of every
cluster in their sorting order and removed every record whose
heterogeneity to its preceding (not removed) records was not
in the requested range [ℎ⊥, ℎ⊤]. In the third step, we sorted the
reduced clusters by their size and selected the 10,000 largest clus-
ters as test input. We applied this approach for the three settings
(ℎ⊥, ℎ⊤) ∈ {(0.06, 0.2), (0.2, 0.4), (0.3, 0.7)} while restricting the
schema to the personal attributes. The result are the three test
datasets NC1, NC2 and NC3. The characteristics of these datasets
are depicted in Table 3. As these numbers show, even though we
only used 0.07% of all clusters as input, these datasets are larger
than the Cora, Census and CDDB datasets.

To evaluate the difficulty of detecting fuzzy duplicates within
the individual datasets, we applied three duplicate detection al-
gorithms each using another similarity measure18 (the same for
all attributes). The first measure (short ME/DL) was the same
combination of the Monge-Elkan and the Damerau-Levenshtein
Similarity as we used it to calculate the heterogeneity scores

18Here, we tried to cover a wide range of measures by using a hybrid, a sequential,
and a token-based measure.

(see Section 6.3). The other two measures were the Jaro-Winkler
Similarity (sequential) and the Jaccard Similarity using trigrams
(token-based) [8]. The similarity of two records was always com-
puted as the weighted average similarity of their values. Since we
observed that the name values are sometimes confused between
the individual attributes, we matched every combination of them
and used the 1:1 matching with the highest similarity for aggre-
gation. To weight the individual attributes we used again their
entropy. In this case, however, we calculate it using all records
(i.e., including the duplicates), since the user does not know these
duplicates in advance. In addition, the entropy was calculated
solely based on the records of the customized datasets. Thus, the
resulting weights differed from the ones we used to calculate the
heterogeneity scores (e.g., 0.66 vs. 0.48 for the first name). In the
case of the larger datasets (CDDB and NC1-NC3), we reduced
the initial search space by applying a multi pass of the Sorted
Neighborhood Method [23] where we conducted one pass for
each of the five most unique attributes and used a window of
size 𝑤 = 20. Since a few true duplicate pairs were lost through
this reduction (always less than 1%), we added them back to the
search space before starting the actual matching process.

The results of these duplicate detection algorithms applied to
the different test datasets are depicted in Figure 5. As we can
see in Figure 5a to 5c, the quality of the duplicate detection algo-
rithms decreased when we increased the heterogeneity of the test
data, since the more difficult it was to separate the duplicate from
the non-duplicate pairs. In the first case, the test dataset was very
clean and we could achieve almost a perfect 𝐹1-score for all three
measures. Moreover, for two out of three measures, this score
was high for every threshold between 0.65 and 0.85, which made
it easier to select an appropriate value for this threshold without
knowing these numbers. In the case of the second dataset, the
maximal 𝐹1-score was still pretty solid (i.e., close to 0.8), but the
threshold had to be set much more carefully and the quality of a
setting already depended on the individual measures. For exam-
ple, for Jaccard the best threshold was 0.57, but for Jaro-Winkler
it was 0.75 and there was no threshold that worked well for all
measures. Finally, in the case of the last dataset, the maximal
𝐹1-score decreased significantly and even a score of 0.4 was hard
to achieve. All this shows that the precalculated heterogeneity
scores can be perfectly used to adjust the test data to increase the
difficulty of detecting fuzzy duplicates. Moreover, as we can see,
the ME/DL Similarity did not perform better than the Jaccard Sim-
ilarity which shows that using this measure to calculate the test
datas’ heterogeneity scores has not produced any noticeable bias.
Finally, when we compare the results of the three customized
test datasets NC1 to NC3 with the results of the Cora, Census
and CDDB datasets, we see that they show similar patterns as
NC2 in terms of the maximally achieved 𝐹1-score and the shapes
and positions of the individual graphs. Only the Census dataset
differs a little bit, because here Jaro-Winkler scored much better
than for the other datasets and the single graphs correspond less
to a bell shape. In summary, this shows that the sheer amount of
data of our original test dataset enables us to create test data that
are cleaner (NC1), equally clean (NC2) and dirtier (NC3) than
these real-life use cases giving us the opportunity to design our
test data in the way our evaluation goals require. We repeated
this experiment with different parts of our original test dataset
as input. Since the compositions of the generated datasets differ
slightly, there were also slight differences in the resulting graphs,
but the findings were always the same.
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Figure 5: 𝐹1-scores in relation to similarity thresholds for several similarity measures and test datasets

7 RELATEDWORK
Almost all existing test datasets have been either artificially gen-
erated (e.g., by using an automatic generation tool) or been man-
ually labeled. While artificial datasets have the obvious disad-
vantage of not containing actual real-life duplicates and errors
(including outdated values), labeling duplicates manually is ex-
tremely expensive so that this approach is only an option for very
small datasets. For example, the commonly used Cora, Census
and CDDB datasets contain less than 10,000 records each (see Sec-
tion 6.1). The essential shortcoming of an automatic labeling ap-
proach [32] is that the resulting gold standard is often not sound
and biased towards the used algorithms, which can significantly
distort evaluation results. One example of artificially created test
data is the ERIQ dataset [31] which contains 100,000 records of
customer data. Although this number is much larger than those
of the manually labeled datasets, it is still small compared to
typical big data applications. Further test datasets (manually la-
beled or artificially generated) can be found on the websites of
the Hasso Plattner Institute11, the University of Leipzig19, and
the Magellan project20. To the best of our knowledge, none of
the existing test datasets provides precalculated similarity scores
that help users to customize datasets on their basis.

Automatic test data generation tools can be divided into two
classes: Data synthetization tools that generate all data values
– including duplicates and errors – from scratch and data pol-
lution tools that get a clean dataset as input and pollute it with
duplicates, errors and inhomogeneities. Data synthetization tools,
such as DBGen [14] or the Febrl Data Set Generator [3], are very
efficient so that large datasets can be generated in short time
[15]. However, since every data value is fictional, it is almost
impossible to guarantee that the resulting values patterns are

19https://dbs.uni-leipzig.de/en/research/projects/object_matching/benchmark_
datasets_for_entity_resolution
20https://sites.google.com/site/anhaidgroup/useful-stuff/data

Table 5: Previous usage of North Carolina voter data

number of cluster sizes†

paper records attr. clusters dupl. pairs avg max
[18] 14,183 25 ? ? ? ?
[5, 10] 8,261,838 19 8,110,137 155,469 2.02 6
[11] 200,000 6 100,000 200,000 2 2
[30] 5,000,000 4 3,500,840 3,331,384 4 5
[30] 10,000,000 4 6,625,848 14,995,973 7.7 10
†of non-singletons

realistic. Data pollution tools, such as GeCo [6], TDGen [2], or
DaPo [15], are the best option to generate test data with real-
istic value patterns because real-life data can be used as input.
Moreover, if a broad spectrum of error types is supported they
are nearly domain-independent. Except DaPo, however, existing
pollution tools are strongly limited with respect to their scala-
bility so that generating large datasets is either impossible or
extremely time consuming [15]. A major problem that all these
tools have in common is an appropriate simulation of outdated
values and the complex error patterns that result from them.

Data of the NC voter register have been already used as test
data in several works (see Table 5). Alas most of these uses are
not fully documented and/or the provided links are outdated21.
Thus, we cannot say exactly which data were used as input. The
small size of the first dataset indicates that only a small portion
of the voter register was used. The second dataset was created
by Christen [5] in an earlier attempt to use the temporal changes
of the voter data for generating test data with realistic outdated
values. He regularly downloaded the current voter registration
file on a bi-monthly basis over a time period of three years and
combined these self-made snapshots after removing exact du-
plicates. However, instead of using the inherent gold standard

21ftp://www.app.sboe.state.nc.us [10, 11] and ftp://alt.ncsbe.gov/data/ [5]
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provided by the NCID, he created it artificially by applying a
rule-based duplicate detection approach. Thus, this gold standard
is not guaranteed to be sound and biased towards algorithms
using a similar detection approach.

Durham et al. [11] randomly selected 100,000 records from the
voter register and generated polluted versions of these records by
artificially introducing typos, semantic and phonetic errors. The
last two datasets were created similarly by artificially polluting a
randomly selected set of voter records with duplicates and errors
using the GeCo tool [6]. Thus, these three datasets do not contain
real-life errors and especially lack in realistic outdated values.

Except the last one, the sizes and duplicate distributions of
these five datasets are nowhere near the numbers of the test
dataset we generated in our study. Moreover, none of these au-
thors enhanced their data with useful statistics, such as plausi-
bility and heterogeneity scores, as we did in this study. Finally,
to the best of our knowledge, we are the first who discuss the
aspects of quality, usability and reproducibility in the context of
test data for duplicate detection in such a depth.

8 CONCLUSION & FUTURE WORK
In this paper, we presented a large-scale dataset for evaluating
duplicate detection algorithms and the approach behind its gen-
eration. Extracted from an historical voter register from North
Carolina, our test dataset contains more than 120 million records
and 640 million duplicate pairs making it uniquely suitable for
evaluating duplicate detection at scale. Besides the dataset’s size,
our study focused on its quality, usability and reproducibility.
The records’ historical nature means that they contain many
outdated values and – since data was often entered manually –
also a large variety of other error types, such as typos, phonetic
errors or confusions between attributes. While the data values
themselves contain many errors, the underlying gold standard is
largely error-free which is a mandatory requirement to ensure
meaningful evaluation results. In general, its large size as well
as its large number of different data errors makes the dataset
perfectly suitable for users who want to customize their own
datasets based on the requirements of their respective evaluation
goals. To support such customizations, we equipped the indi-
vidual records with similarity scores modeling their plausibility
and heterogeneity. Finally, we integrated several mechanisms to
ensure reproducibility when the dataset is growing with future
updates. In summary, our approach enables generating large-
scale test datasets with realistic errors including outdated values
(which are hard to synthesize) and without the need for labeling
duplicates manually (which is extremely labor-intensive).

Our plans for future work targets two different ways to ex-
tend our approach. First, we intend to generalize the procedure
described here and apply it to historical corpora from other do-
mains. This will provide the research community with large-scale
test datasets beyond use cases that revolve around personal data.
Second, we plan to combine our approach with a scalable data
pollution tool, such as DaPo, to unite the strengths of having
real outdated values and being able to inject additional errors at
will. Our goal here is to increase the flexibility for customization
and thereby facilitate generating test datasets geared for specific
user demands. We think our presented work is useful to other
researchers and we hope that our current line of research will
pave the way for novel solutions that combine approaches using
historical data with methods of data pollution in creative ways.
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