
Path Indexing in the CypherQuery Pipeline
Jochem Kuijpers

contact@jochemkuijpers.nl

TU Eindhoven, Netherlands

George Fletcher

g.h.l.fletcher@tue.nl

TU Eindhoven, Netherlands

Tobias Lindaaker

tobias.lindaaker@neo4j.com

Neo4j, Sweden

Nikolay Yakovets

n.yakovets@tue.nl

TU Eindhoven, Netherlands

ABSTRACT
We investigate how a state of the art path index can be integrated

into the Cypher query pipeline of the industrial Neo4j graph data-

base. We identify the characteristics of practical use-cases where

application of path indexes is beneficial to query evaluation and

performance of index maintenance. Through in-depth empiri-

cal evaluation, we conclude that path indexes are most effective

when used on selective patterns that allows the query planner to

avoid high intermediate state cardinality and thus significantly

accelerate query performance. As such patterns arise naturally

in querying on real graphs, we can conclude that path indexes

are a valuable method for improving the performance of graph

database systems in practice.

1 INTRODUCTION
A common operation in graph databases is pattern query eval-

uation, i.e., looking for all matches of a query graph in a data

graph [1]. This operation searches for sub-graphs in the data with

a structure that is constrained by the query. A state of the art

index on paths has been introduced in prior work [7, 17]. It has

been shown that this index can be effective in accelerating query

evaluation by multiple orders of magnitude and can be effectively

maintained as the underlying data graph is updated [4, 12]. Cur-

rent graph databases struggle with scalability, as graphs continue

to grow in size and complexity [14]. Path indexes are a promising

technique to help address query performance in practice.

In this short paper, we present experiences gained from the

practical integration of a path index into the Cypher query pipeline

of the Neo4j graph database management system. Cypher is a

de facto industry standard query language for graph databases;

Neo4j is one of the most popular and widely-deployed graph

databases in industry [8]. We explore practical use-cases where

path indexes can significantly improve query processing perfor-

mance, and analyse scenarios when this query acceleration is

achieved through an in-depth empirical evaluation. We conclude

that path indexes are most effective when used on selective pat-
terns that allow the query planner to avoid high intermediate

state cardinality and thus significantly accelerate query perfor-

mance. This result is not immediately obvious for contemporary

graph database systems, and to our knowledge has not been ob-

served before. As such patterns arise frequently in applications

due to correlations in the structure of real world graphs, we can

conclude that path indexes are indeed a valuable and practical

method for scaling graph data management in industrial systems.

While our experiments were made using Neo4j, the results

are immediately applicable to any graph database management

© 2021 Copyright held by the owner/author(s). Published in Proceedings of the

24th International Conference on Extending Database Technology (EDBT), March

23-26, 2021, ISBN 978-3-89318-084-4 on OpenProceedings.org.

Distribution of this paper is permitted under the terms of the Creative Commons

license CC-by-nc-nd 4.0.

1

2

4

FriendOf

Fr
ien

dOf

3 7

5

6

FriendOf LivesIn

LivesIn

Live

sIn

P

P

P

P

P

P

L

Figure 1: Example of a simple property graph. Nodes la-
beled P represent Person nodes. The node labeled L repre-
sents a Location. Shaded paths represent path indexes.

system that implements Cypher or any other graph query lan-

guage such as SPARQL or G-CORE that supports matching path

patterns comprising a sequence of node and edge labels [1].

2 BACKGROUND
Property Graphs. Neo4j uses the property graph data model

[1, 8]. A property graph is a graph where: every node can have

an arbitrary number of labels; every relationship is directed be-

tween two nodes and has exactly one type; there may be multiple

relationships of the same type between the same nodes, i.e. it is a

multi-graph; and, every node and relationship can have an arbi-

trary number of associated attribute-value pairs. As an example,

Figure 1 shows a property graph (suppressing attribute-value

pairs) representing a small social network.

Cypher Query Language. Cypher is a declarative graph query

language that is loosely based on SQL [8]. It contains familiar

SQL keywords such as WHERE that function essentially the same

by allowing users to apply predicates to filter the results of the

query. However, in Cypher, the primary way to retrieve data

is using the MATCH-clause. Such a clause contains one or more

pattern expressions. A pattern expression is an alternating se-

quence of nodes and relationships, starting and ending with a

node. Nodes are expressed using parentheses while relationships

are expressed as arrows. Query variables are declared by their

inclusion in one or more pattern expressions and can be used

in other clauses. For example, (x:Person) matches all nodes x
with label Person and (p:Person)-[r:Lives_In]->(c:City)
matches all directed relationships r from nodes p to nodes c, with
labels Lives_In, Person, and City, resp.

Path Patterns. A path pattern is a sequence of alternating node

labels and relationship patterns starting and ending with a node

label. A relationship pattern contains both a relationship type and

its direction (either forward,→, or reversed,←). E.g., given the

node labels {𝐴, 𝐵} and the relationship type 𝑅, the following nota-
tion describes a path pattern of length 2: ⟨𝐴, (𝑅,→), 𝐵, (𝑅,←), 𝐵⟩,
counting relationships to determine the length.

A path pattern describes a set of constraints that can be ap-

plied to paths of the same length. Given a 𝑘-length path pattern

Industrial Paper

 

 

Series ISSN: 2367-2005 582 10.5441/002/edbt.2021.68

https://OpenProceedings.org/
http://dx.doi.org/10.5441/002/edbt.2021.68


⟨𝑁0, (𝑅1, 𝐷1), . . . , (𝑅𝑘 , 𝐷𝑘 ), 𝑁𝑘 ⟩, then a path ⟨𝑛0, 𝑟1, . . . , 𝑟𝑘 , 𝑛𝑘 ⟩ in
the graph satisfies the pattern if and only if all nodes 𝑛𝑖 have

a 𝑁𝑖 label for 0 ≤ 𝑖 ≤ 𝑘 and all relationships 𝑟𝑖 are of type

𝑅𝑖 and direction 𝐷𝑖 for 1 ≤ 𝑖 ≤ 𝑘 . As an example, the pattern

⟨𝑃, (FriendOf ,→), 𝑃, (LivesIn,→), 𝐿⟩ would yield one query re-

sult on the graph in Figure 1.

Prior Work on Path Indexing. Querying graph databases us-

ing indexes is a complex field of study. A detailed contemporary

survey of existing techniques can be found in [1]. The 𝑘-path
index, introduced by Fletcher et al. [7, 13, 16, 17], demonstrated

that significant orders-of-magnitude query performance improve-

ments are possible with path indexing. Here, the intuition is to

index all, or a selected subset of all, paths of length up to 𝑘 , where

𝑘 is the count of relationships in the indexed paths. Fletcher et

al. built the 𝑘-path index by concatenating edges in the graph

and storing the resulting paths in a relational database [7]. The

resulting table was indexed and used to speed up path queries.

Sumrall et al. [17] engineered a 𝑘-path index directly imple-

mented using a B
+
-tree and demonstrate the potential for acceler-

ated query processing. Sumrall also studied how one could index

paths with specific patterns (e.g., as given in a workload) rather

than all paths of length 𝑘 .

Persson [12] utilized the path index concept to speed up dense

network data retrieval by indexing all paths of length 1. This

index was called a Shortcut Index. Persson intentionally limited

his work to indexes with a single relationship to avoid expensive

maintenance computations on graph updates, which could not

be afforded in the described use-case.

De Jong [4] demonstrated how indexes can be more efficiently

maintained bymaintaining sub-patterns as separate indexes. This

allows for a significant speed-up of index maintenance, at the

expense of increased storage overhead.

Boncz et al. [3] and Luo et al. [10] give a broader overview

of graph query processing with indexes, both in contemporary

systems and in research, as well as the role of query selectivity

in effective graph query processing. To our knowledge, ours is

the first study of path indexing in industrial systems.

Path Indexes. A path index is a data structure that indexes all

paths in the data graph which satisfy a chosen path pattern. This

path pattern is called the indexed pattern. The paths are not stored
directly in the path index, instead a sequence of references is

stored. For every indexed 𝑘-length path ⟨𝑛0, 𝑟1, . . . 𝑟𝑘 , 𝑛𝑘 ⟩, the
index stores references to the nodes and relationships of the

matching paths as a sequence of identifiers: ⟨𝑛id
0
, 𝑟 id
1
, . . . , 𝑟 id

𝑘
, 𝑛id

𝑘
⟩,

where 𝑛id
𝑖
and 𝑟 id

𝑖
are the 𝑖-th identifiers of nodes and relation-

ships in the path respectively.

These sequences of references are converted into a single key

by concatenating the fixed-width identifiers (8 bytes each), which

are stored in a B
+
-tree. This allows logarithmic-time location,

insertion and deletion of entries in the index. Since the identifiers

are concatenated, the B
+
-tree also supports prefix searches. Given

the first𝑚 elements of a path, we can locate the first entry that

starts with this prefix, and scan all paths that match the prefix in

linear-time with respect to the number of results returned. The

worst-case space complexity for the index is O(𝐸𝑘 ) where 𝐸 is

the number of edges in our graph and 𝑘 the length of the path

pattern that is indexed. While the size of the index is linear to the

number of identifiers in the key, each index is defined for a fixed

size key which keeps the size bounded. It is also worth noting

that when indexes are chosen to represent selective patterns, the

size of the index will naturally remain small.

Query Parser

Planner

Runtime

Cost

Estimator

Graph Store

Index Store

Result

Sub-query

Transaction Appliers

Transaction

successful close

Figure 2: An overview of the query pipeline architecture.
Shaded boxes represent our changes, while dashed out-
lines represent a new component.

The shaded parts on Figure 1 represent path indexes. An in-

dex on ⟨𝑃, (FriendOf ,→), 𝑃, (LivesIn,→), 𝐿⟩ (shaded grey) con-

tains just the single path through nodes ⟨1, 3, 7⟩, an index on

⟨𝑃, (FriendOf ,→), 𝑃⟩ (yellow) will contain the paths through

nodes {⟨1, 2⟩, ⟨1, 3⟩, ⟨1, 4⟩} and an index on ⟨𝑃, (LivesIn,→), 𝐿⟩
(purple) will contain the paths through nodes {⟨3, 7⟩, ⟨5, 7⟩, ⟨6, 7⟩}.

3 USING PATH INDEXES
Our Extensions.We next discuss the modifications and exten-

sions to the query pipeline architecture necessary to support

path indexes (Figure 2). Firstly, path index operators have been

added to the Planner component which can scan or selectively

read paths from path indexes. This also requires new costing

heuristics in the Cost Estimator for these operators. The new

operators are also implemented in the Runtime component as

runtime-specific operators that perform the read operations on

the path index store. Further the Index Store was modified to hold

the new type of path index.

When a transaction is committed, the update commands are

translated into paths that have to be added to or removed from

the path indexes through sub-queries on the path patterns of

those indexes. These sub-queries are inserted into the query

pipeline as normal and might use other path indexes to resolve

the query, depending on the context. Full details can be found in

the extended report [9].

4 IMPLEMENTATION
We next discuss integrating the path index into the database

code-base. We will start with an overview of all components

that required modifications in Section 4.1. Section 4.1.1 describes

query-based path index maintenance. Then Section 4.1.2 provides

information on path index initialization.

4.1 Modified Pipeline Components
The implementation of our path index into the query pipeline

required modifications in several components. Figure 2 shows an

overview of the components, where a shaded background means

the component required some modification. The dashed block

“Sub-query” represents a new component.

The cost estimator is extended to estimate a cost for path

index operators. We re-used the existing cardinality estimator

583



due to scoping constraints which assumes that all filtering and

combining operations behave according to global data statistics.

4.1.1 Query-based path index Maintenance. De Jong [4] ob-
served that, as a consequence of the policy in the Neo4j database

to never allow the deletion of a connected node, we only ever

need to look for relationship updates in the graph in order to

update the path index. De Jong describes two methods for trans-

lating graph updates into path index updates.

(1) Traversal-based translation: starting from the updated re-

lationship, traverse the indexed pattern on the data graph

and make note of all the paths encountered. If the rela-

tionship was added, then add all these paths to the index.

Otherwise, remove all these paths from the index.

(2) Self-maintaining translation: maintain a path index for all

sub-patterns of the index pattern. Some of the sub-patterns

need to be reversed in order to do prefix-scans on these

indexes. Then, when handling an updated relationship,

simply do a prefix search on the largest index that contains

the changed relationship in both directions, and combine

the two resulting sets created by these actions. Then add

or remove these paths from the index.

The first method is a naive graph traversal. The secondmethod

requires all sub-patterns to be indexed. We introduce the follow-

ing maintenance method, which uses the query pipeline itself to

find the most effective way to search for updated paths:

(3) Query-based translation: query the index pattern with an

additional predicate that the modified relationship must

be part of the resulting paths. This query then returns all

paths through the updated relationship. We can then add

or remove these paths from the index.

The last approach is far more flexible in terms of which pat-

tern indexes are allowed to exist, compared to self-maintaining

translation. However, it requires executing new queries while

processing transactions. This broke some assumptions about the

way transactions are handled in Neo4j, namely one transaction

per execution thread. As a result, our prototype does not support

concurrent updates. Another issue was that we needed to by-pass

the query cache, otherwise we had no control over which indexes

would be used in the maintenance queries.

When a relationship is modified, added or removed in the

graph, this could mean entries need to be added or removed from

the path indexes. To find out which paths have been changed, a

query is executed that contains the pattern of the index and an

additional constraint that the relationship in the pattern must

match the updated relationship from the transaction. This is

described in Algorithm 1.

There are some important things to consider. Firstly, Neo4j 3.5
1

binds a transaction along with its transaction state to the thread

that opened the transaction. That means that, while we are ap-

plying the outer transaction, the inner query we want to execute

is filtered through the transaction state during maintenance. As

a work-around to this behavior, we store the transaction state of

the outer transaction and reset it for the maintenance queries.

After processing the updates, we restore the old transaction state

such that other Neo4j operations are not affected.

Further, since we are in the middle of applying a transaction,

some of the path indexes might not be up-to-date while other

path indexes may already have been updated. We introduce a

sort order of path indexes by length, small-to-large, to ensure

1
Transactions no longer bind to threads in Neo4j 4.0

Algorithm 1 Maintenance

Input Modified relationship 𝑟 in graph 𝐺 .

1: 𝑏 := the label of the start node of 𝑟

2: 𝑒 := the label of the end node of 𝑟

3: 𝑡 := the type of 𝑟

4: 𝐼 := a list of path indexes with patterns that contain

...(:b)-[:t]->(:e)...
5: Sort 𝐼 by pattern length, ascending.

6: 𝑇old := the committed transaction state.

7: Reset the transaction state.

8: if 𝑟 is a removed relationship then
9: for all index in 𝐼 do
10: 𝑃 := the pattern of index containing relationship 𝑟

11: 𝑅 :=Query(𝑃 , 𝐺)

12: Remove all entries 𝑅 from index.
13: Process all other transaction appliers for 𝑟 .

14: if 𝑟 is an added relationship then
15: for all index in 𝐼 do
16: 𝑃 := the pattern of index containing relationship 𝑟

17: 𝑅 :=Query(𝑃 but avoid using index, 𝐺)
18: Add all entries 𝑅 to index.
19: Set the transaction state to 𝑇old .

Algorithm 2 Index initialization

Input index pattern 𝑃 , data graph 𝐺

Output initialized index 𝐼

1: 𝐼 := a new path index

2: Result_Iterator := Query(𝑃 , 𝐺)

3: while Result := Result_Iterator .next do
4: Add Result to 𝐼

that any maintenance query plan for a path of length 𝑘 will itself

only include path indexes of lengths smaller than 𝑘 , which by

then have already been updated. When we remove a relationship

from the graph, we want the maintenance query results to still

include it so we know which paths to remove from the index.

That is why the query for removals is done before modifying

the underlying data. For relationship additions, the reverse holds.

We want to include it in the maintenance query results in order

to add these paths to the index, therefore we must query these

after the underlying data has been updated.

Similar maintenance steps can be applied for node label up-

dates. Node additions and removals can be ignored, as those are

only allowed for disconnected nodes, making it impossible to

affect path index maintenance.

4.1.2 Initialisation. A small but important aspect is being able

to create indexes on existing data: index initialization. This is

done by querying the pattern on the existing data graph and

adding the result set to the new index in a single transaction.

Other indexes that have already been initialized may be used at

this point. Index initialization thus follows the simple procedure

described in Algorithm 2.

Sumrall [16] proposed constructing a B
+
-tree directly from

a sorted list of query results in order to speed up the B
+
-tree

construction, though this was not practical to achieve in our

implementation since the B
+
-tree memory layout is abstracted in

the code base. As index initialization was not the primary focus

of this study, we used our more naive approach, which increases

the one-time construction cost of any path index.

584



5 EXPERIMENTAL SETUP
Baseline Planner Extension. The planning model used by

Neo4j is node-centric. There exist a number of ways to selec-

tively scan or seek nodes by their node labels and indexes exist

on node properties, but there are few ways to selectively scan or

seek based on relationship types. Our path index implementation

will have these abilities. Therefore we apply an extension to the

baseline planner which includes an operator that scans relation-

ships by type. It is introduced with the same cost heuristics as the

most similar node-based operator. Our path index query plans

are compared with this extended baseline.

Hardware and Software. Our experiments were performed

on a server with four Intel Xeon E5-4610 v2 CPUs running at

2.30GHz, 500GB of DDR3 RAM at 1600MHz. We used its 260GB

NVMe SSD for data storage. The server ran Ubuntu 16.04.3 LTS

and the Oracle Java (TM) SE Runtime Environment (version 1.8.0-

151). We prototype on the Neo4j 3.5 community code base [11].

Methodology.Our experiments ran with a pre-allocated heap of

100GB. Each experiment ran until running time converges, which

indicates that hot code paths were optimized by the JVM. Then

we ran the experiment five times, triggering a garbage collection

cycle between each run and flushing the data from memory

without restarting the JVM as this would lose hot code path

optimizations. We then discarded the highest and lowest running

time and averaged the remaining three results. For data set sizes,

we summed the total data file sizes on disk. Path index stores

were measured separately and transaction logs were excluded.

Datasets.We use four data sets in our experiments: two synthet-

ically generated and two real-world data sets. The first synthetic

data set is referred to as the correlated data set, as it has high

structural correlation. It has 125K nodes and 12.6M relationships

and was created by interconnecting 25 000 copies of the same

path, making it a highly selective pattern. The second synthetic

data set is referred to as the independent data set as there are no
structural correlations in the connections between nodes. It has

250K nodes and 5M relationships. The first real-world data set

is the YAGO data set [15], containing 77M nodes and 100M rela-

tionships. The second real-world dataset is the GeoSpecies data

set [5], containing 225K nodes and 1.5M relationships. Coming

from distinct application domains, these graphs allow us to gain

practical insights into the robustness of our methods.

6 RESULTS
Our hypothesis is that our path index is not suited for application

on high-cardinality path patterns, since the worst-case space

requirement is exponential in path length. Indeed, we observe

that path indexes are especially useful for highly selective paths

on correlated data, as the cost of the path index is very low

compared to the computation of intermediate state that can be

skipped by using the index.

To test this hypothesis, we first run two controlled scenarios of

queries on highly correlated and uniformly distributed synthetic

data sets. We generate our own data sets, rather than using a

benchmark such as LDBC SNB [6], so as to finely control the

structure of the data. This was sufficient for our goals here, but

we note that off-the-shelf generators such as gMark could also

have been used [2]. Then, we verify our findings by applying our

path index to two real-world scenarios: a selective, correlated

path query and a high-cardinality path query.

Finally, we show that path indexes can be applied to index

maintenance in some cases, and the effect of selective, correlated

index path patterns.

6.1 Synthetic Query Benchmarks
Our first experiments show that choosing the right path index can

significantly improve query performance. The available indexes

on this data set are described in Figure 3 (Correlated synthetic).
The query pattern matches that of the full index. The result of

this query when planned with different indexes can be seen in

Figure 4 (Correlated synthetic). The full index is clearly the best

as it essentially pre-computes the answer. However, sub-index

𝑆1 has similar performance for a smaller index, which may offer

more re-use capabilities.

The second experiment, illustrated in Figure 4 (Independent
synthetic), shows the same technique applied to a uniformly

distributed data set. The indexes available here are described in

Figure 3 (Independent synthetic). Because there is no selective,

structural correlation in this data set, the query produces many

more results. Indexing these results, even in sub-indexes, provides

no significant speed improvement.

Both of these experiments show dependency between the

running time and the maximum intermediate cardinality. This

indicates that indexing selective patterns can significantly reduce

the maximum intermediate cardinality during query evaluation,

and thus the running time of the query.

6.2 Real-world Query Benchmarks
After findings on synthetic datasets, we applied our technique

to real-world data sets. Our first dataset, YAGO [15], has a file

containing query workloads. We used the cardinality estimation

model of the Neo4j planner that assumes independence between

elements to find the query that was most mis-predicted, as our

assumption was that this query would be highly correlated, since

this is exactly the type of query that will yield mis-predictions

by this cardinality estimation model.

We then applied path indexes that matched parts of the query

to speed up query evaluation [9]. The heuristic cost estimator

we used was built on the assumption of independence. For the

YAGO experiments, the resulting query plans were of insufficient

quality. We have manually created better query plans to show

what an improved cost estimator could achieve with our indexes.

The indexes are described in Figure 3 (YAGO dataset) and the

benchmark results are shown in Figure 4 (YAGO).
The full index on the query pattern significantly speeds up

query evaluation time compared to our manually optimized base-

line. The plans using smaller sub-indexes further improve per-

formance, even though it requires more steps to fully answer

the query in these plans. This can be explained by the reduction

of intermediate cardinality in later stages of the operator tree.

The high cardinality of the 𝑆2 and 𝑆3 plans is caused by the first

node scan operator which is reduced early on in the execution of

the query plans, this explains the faster execution time despite

the initially higher cardinality compared to the 𝐹 plan. The path

index efficiently produces the full path on this reduced state,

achieving fast total execution times.

We have also applied this to another data set with a less se-

lective query, expecting our path index would not be able to

speed up query evaluation performance as much. And indeed,

our experiment results (shown in Figure 3 and Figure 4 under

585



)BM(eziSytilanidraCnrettapdexednIemaN

G - – 413.97
F (:A)-[:X]->(:A)-[:X]->(:A)-[:Y]->(:B)-[:X]->(:A) 25 000 3.92
S1 (:A)-[:X]->(:A)-[:X]->(:A)-[:Y]->(:B) 25 000 3.17
S2 (:A)-[:X]->(:A)-[:Y]->(:B)-[:X]->(:A) 25 000 3.17
S3 (:A)-[:X]->(:A)-[:X]->(:A) 12 524 000 970.56
S4 (:A)-[:X]->(:A)-[:Y]->(:B) 25 000 2.39
S5 (:A)-[:Y]->(:B)-[:X]->(:A) 6 274 500 471.59
S6 (:A)-[:X]->(:A) 6 299 500 364.95
S7 (:A)-[:Y]->(:B) 6 274 500 250.27
S8 (:B)-[:X]->(:A) 25 000 1.55

Correlated synthetic
)BM(eziSytilanidraCnrettapdexednIemaN

G - – 171.24
F (:A)-[:V]->(:B)-[:W]->(:C)-[:X]->(:D)-[:Y]->(:E) 862 345 97.92
S1 (:A)-[:V]->(:B)-[:W]->(:C)-[:X]->(:D) 280 050 33.97
S2 (:B)-[:W]->(:C)-[:X]->(:D)-[:Y]->(:E) 295 337 35.55
S3 (:A)-[:V]->(:B)-[:W]->(:C) 111 532 10.42
S4 (:B)-[:W]->(:C)-[:X]->(:D) 102 812 9.72
S5 (:C)-[:X]->(:D)-[:Y]->(:E) 129 410 8.70
S6 (:A)-[:V]->(:B) 40 039 2.45
S7 (:B)-[:W]->(:C) 40 227 2.47
S8 (:C)-[:X]->(:D) 40 613 1.97
S9 (:D)-[:Y]->(:E) 40 220 1.84

Independent synthetic

)BM(eziSytilanidraCnrettapdexednIemaN

G - – 20 947.05
F (a)-[w]->(b)-[v]->(c)-[x]->(d)-[y]->(e)-[z]->(f) 2 320 0.45
S1 (a)-[w]->(b)-[v]->(c)-[x]->(d) 7 < 0.01
S2 (b)-[v]->(c)-[x]->(d)-[y]->(e) 12 323 1.58
S3 (c)-[x]->(d)-[y]->(e)-[z]->(f) 366 0.01

YAGO dataset

Name Indexed pattern Cardinality Size (MB)

G - – 117.99
F (a)-[x]->(b)<-[y]-(a)-[x]->(b) 334 126 32.13
S (a)-[x]->(b) 24 814 1.54

GeoSpecies dataset

Figure 3: The available indexes on the benchmarked datasets with their cardinality and storage size. Here, G denotes the
size of the whole graph, F the index for the full path, and S indexes for sub-paths.

maximum intermediate cardinalitytime

Figure 4: Benchmark results on the data sets. B denotes the baseline, F indexing the full path, and S indexing sub-paths.

(a) Correlated data (b) Independent data

Figure 5: Results of the maintenance experiment on correlated (left) and independent (right) data. The rows show the
amount of time required to update the index, given the presence of a sub-pattern index named in the left-most column.

GeoSpecies) show that, because the result cardinality is the high-

est cardinality in the query evaluation, our path index was not

able to skip over large intermediate cardinalities, and thus no real

performance gain was achieved.

6.3 Maintenance Using Sub-Indexes
Not only can sub-pattern indexes provide performance benefits

during query execution. As De Jong [4] showed, sub-patterns

can also be used to speed up the maintenance of the full index.

Where the self-maintaining translation introduced by De Jong

exhaustively provides all sub-patterns such that no data has to be

read from the graph, our approach simply defers this decision to

the query planner, as maintenance is performed using a specific

query on the indexed pattern. This allows us to pick an arbitrary

set of path indexes, which may then also be used to speed up

maintenance when applicable.

In this experiment, we first look at the performance benefits

on our synthetic correlated data set for index maintenance, as we

provide one of the sub-pattern indexes from Table 3 alongside the

Full index. The graph is updated to remove one of the Y-labeled
relationships in a transaction, after which this same relationship

is added again in a new transaction. Fig. 5 (a) shows the results of

this experiment. The first row contains the maintenance perfor-

mance of just the Full index and the subsequent rows contain the

586



performance of using a maintenance plan that includes the sub-

pattern index. Further, the sub-pattern index itself may also need

to be maintained, thus these measurements are also included.

For this experiment, the query planner is forced to use a plan

that uses the sub-pattern index for the Full index maintenance.

This sometimes results in a slower maintenance plan as only

some query plans are considered. We may assume that the plan-

ner would not use the sub-index for maintenance in that case,

if given the choice, though the figures give an indication of the

effect on maintenance of the sub-index. The average speed-up re-

ported is the factor of performance increase of both maintenance

operations for the removal and addition of a relationship.

Interestingly, both Sub1 and Sub4, the indexes that provided
the most performance increase during query execution, do not

speed up the maintenance operations of changes to this specific

relationship. Sub3 provides a moderate performance increase for

maintenance computations, while it was the worst performing

index in the previous query execution experiment.

We then perform the same set of transactions, by removing

an Y-labeled relationship in a transaction and adding it in an-

other transaction, leading to index maintenance on the synthetic

independent data set. We observe that similar modest speed im-

provements can be achieved the sub-pattern indexes on the full

index maintenance in Fig. 5 (b), while the forced plans for some

sub-indexes perform considerably worse as well.

7 LESSONS LEARNED
Indexing paths in graphs often makes sense in practice.
Since the number of (potential) paths in a graph grows exponen-

tially with path length, it might seem too prohibitive (wrt. worst-

case space complexity) to index path patterns in large graphs.

In this work, on the contrary, we found out that, in practice,

indexing strategically-chosen path patterns can, in fact, greatly

improve query performance in both synthetic and real datasets

at a small storage overhead. The practicality of this approach is

underscored by our integration of our work in the Neo4j system.

Patterns with high structural correlation are most benefi-
cial to index. Patterns where there is high correlation in the

connections between the nodes in the data will result in a rela-

tively low number of paths matching the pattern. The number of

edges that have to be explored to match the same pattern through

direct traversal of the graph would be substantially larger. In such

situations the cardinality of the intermediate result is substan-

tially larger than cardinality of matches to the whole pattern. Our

experiments show that when correlated patterns are indexed, this

high cost of computing these intermediate results of high cardi-

nality is avoided. Furthermore the size of the index for such a

highly selective pattern over correlated data is small as well. This

turns out to be a sweet spot for path indexes, where the benefit

of the index is high and the overhead of the index is low.

In contrast, for patterns matching uncorrelated data, the size

of the index is proportional to the cardinality of the intermediate

result, which in many cases grow exponentially in the size of

the underlying graph. In these cases we experience not only a

prohibitively large storage overhead for the index, but also no

tangible performance benefit, since enumerating the paths from

the index is proportional to enumerating the paths by direct

traversal of the underlying graph.

Patterns to be indexed should be chosen with care. Hence,
one should take advantage of structural correlations which natu-

rally occur in graphs in order to choose path patterns that have

(1) low cardinality and (2) help to cut down on the cardinality

of intermediate results during the evaluation of queries in the

workload. Finding path patterns that satisfy both (1) and (2) is

not trivial and is ultimately a constrained optimization on the

given workload and usable storage.

8 CONCLUSIONS
We have reported on our practical experiences integrating a

state of the art path index into the query processing pipeline of

Neo4j, a popular industrial graph database. Through extensive

empirical study, we found that selective path indexes can greatly

accelerate query evaluation performance. This is especially true

in those cases where the query engine would otherwise require

computations on large intermediate state to arrive at a relatively

small result set. In these scenarios, which arise commonly in

practice due to correlations in the structure of real world graphs,

we have shown that even though path indexes in the worst case

require exponential storage, these selective path indexes can

be very small relative to the total graph size. These are optimal

scenarios for path indexes since the path index is able to provide a

significant performance improvement with a low space overhead.

Our extended report [9] contains further details and results, such

as technical aspects of the integration into Neo4j, the technical

challenges encountered, and the engineering lessons learned.

Looking ahead, there are several interesting directions for fur-

ther research. We close by indicating two of these: (1) investigate

more deeply query planning in the presence of path indexes,

including cardinality estimation and costing techniques for path

indexes; and, (2) study methods for selecting which patterns to

index, balancing space costs and performance benefit, e.g., with

respect to a given query workload.

REFERENCES
[1] Angela Bonifati, George Fletcher, Hannes Voigt, and Nikolay Yakovets. 2018.

Querying graphs. Morgan & Claypool Publishers.

[2] Guillaume Bagan, Angela Bonifati, Radu Ciucanu, George H. L. Fletcher, Au-

rélien Lemay, and Nicky Advokaat. 2017. gMark: Schema-Driven Generation

of Graphs and Queries. IEEE Trans. Knowl. Data Eng. 29, 4 (2017), 856–869.
[3] Peter A. Boncz, Orri Erling, and Minh-Duc Pham. 2014. Advances in Large-

Scale RDF Data Management. In Linked Open Data - Creating Knowledge Out
of Interlinked Data - Results of the LOD2 Project. LNCS, Vol. 8661. 21–44.

[4] Niels de Jong. 2019. MAGPIE (a Maintainable Graph Pattern Indexing Engine):
Towards a versatile path index for the industrial graph database. Master’s thesis.

Eindhoven University of Technology, Eindhoven, The Netherlands.

[5] Peter DeVries. 2009. The GeoSpecies Knowledge Base ontology. http://rdf.

geospecies.org/geospecies.rdf.gz. Accessed in March 2019.

[6] Orri Erling et al. 2015. The LDBC Social Network Benchmark: Interactive

Workload. In SIGMOD. 619–630.
[7] George Fletcher, Jeroen Peters, and Alexandra Poulovassilis. 2016. Efficient

regular path query evaluation using path indexes. In EDBT. 636–639.
[8] Nadime Francis et al. 2018. Cypher: An evolving query language for property

graphs. In SIGMOD. 1433–1445.
[9] Jochem Kuijpers. 2020. Path Indexing in the Cypher Query Pipeline. Master’s

thesis. Eindhoven University of Technology, Eindhoven, The Netherlands.

[10] Yongming Luo et al. 2012. Storing and Indexing Massive RDF Datasets. In

Semantic Search over the Web. Springer, 31–60.
[11] Neo4j Inc. 2019. Neo4j 3.5 source code. https://github.com/neo4j/neo4j/tree/3.5.

Accessed in January 2020.

[12] Anton Persson. 2016. The Shortcut Index. Master’s thesis. Lund University,

Lund, Sweden.

[13] Jeroen Peters. 2015. Regular path query evaluation using path indexes. Master’s

thesis. Eindhoven University of Technology, Eindhoven, The Netherlands.

[14] Siddhartha Sahu et al. 2019. The ubiquity of large graphs and surprising

challenges of graph processing: extended survey. The VLDB Journal (2019).
[15] Fabian M. Suchanek, Gjergji Kasneci, and Gerhard Weikum. 2007. Yago: A

Core of Semantic Knowledge. In WWW. 697–706.

[16] Jonathan M. Sumrall. 2015. Path indexing for efficient path query processing
in graph databases. Master’s thesis. Eindhoven University of Technology,

Eindhoven, The Netherlands.

[17] Jonathan M. Sumrall et al. 2016. Investigations on path indexing for graph

databases. In PELGA @ Euro-Par.

587


	Path Indexing in the Cypher Query PipelineJochem Kuijpers, George Fletcher, Tobias Lindaaker, Nikolay Yakovets

