
Correlation graph analytics for stock time series data
Tong Liu, Paolo Coletti, Anton Dignös, Johann Gamper and Maurizio Murgia

Free University of Bozen/Bolzano, Bozen/Bolzano, Italy
{name.surname}@unibz.it

ABSTRACT
Stock market events are hard to model. In recent years, one ap-
proach that has been receiving increasing attention is to analyze
graphs induced by price correlations of different stock companies.
By analyzing the structure of such graphs, it is possible to identify
critical events, e.g., market crises. To the best of our knowledge,
there are no tools available that offer comprehensive support
for such analyses. This paper introduces a novel tool that offers
in-depth analysis with the ability of fine tuning parameters with
an intuitive user interface. With a proposed workflow to handle
time series data, the tool becomes versatile and it can analyze
correlation graphs of different semantics: minimum spanning
tree, graphs with edge thresholds, and evolving graphs. It also
provides a rich set of functions that enable users to explore easily,
interactively and systematically the correlation graphs starting
from a file of raw time series data. With real-world stock data, we
demonstrate how straightforward yet effective it is to accomplish
various analytical tasks with the proposed tool.

1 INTRODUCTION
Time series systems are pervasively used in many domains for
different tasks such as monitoring and recording data gathered
over time, with which analysts can discover meaningful and
valuable information to understand the observed system and to
avoid risks. The examples of applying time-series technologies
to real-world problems are numerous, e.g., fault detection [18],
seasonal trend analysis [21], financial data [11], etc.

For the analysis of financial data, Mantegna [14] proposed to
compute all correlations between the time signals and to visualize
them in a graph. This is illustrated in Fig. 1. First, the pairwise
correlations between the five input signals are computed and
stored in a matrix. Then, the correlation matrix is transformed
into a graph, where nodes represent signals and edges are labeled
with the correlation coefficient between the two nodes. Instead of
visualizing a complete graph, the minimum spanning tree (MST)
is often used as a compact overview of the signal correlations.

In recent years, a significant number of works have shown
that by observing changes in the structure of a MST, it is possible
to deduce important events in stock markets, such as market
crises and volatility [5, 6, 16]. Many studies about stock market
analysis adopted this approach and investigated the structure
and topologies of the induced network or MST [4, 6, 9, 19]. The
study of correlation graph analysis also raised the attention of
the computer science community. Marti et al. [15] studied the
best window length to calculate time series correlations. Azza-
lini et al. [2] proposed a technique to detect significant changes
in financial time series clusters expressed with hierarchical cor-
relation trees. Luo et al. [12] used correlation graphs to spot
cheating behaviors with business data. In the database commu-
nity, research focused on efficient methods for correlation graph

© 2021 Copyright held by the owner/author(s). Published in Proceedings of the
24th International Conference on Extending Database Technology (EDBT), March
23-26, 2021, ISBN 978-3-89318-084-4 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

Figure 1: Correlation analysis of time series using MST.

analyses. Petrov et al. [17] proposed different approaches for
exploring correlated time signals interactively. Aghasadeghi et
al. [1] presented techniques to visualize evolving graphs at dif-
ferent resolutions. Likewise, Mamun et al. [13] studied efficient
solutions for computing MSTs.

When it comes to correlation graph analytics for financial data,
analysts have to tackle several challenges: identifying appropriate
parameter values such that the computed correlation graph is
meaningful and presents visible characteristics; investigating
whether patterns exist for graphs under different representational
semantics, such as MST, graphs with specific thresholds, graphs
of signal classes; assessing the robustness of graph features (e.g.,
radius, degree distribution), and determining if they are reliable to
capture special events. Existing tools in the finance literature [4,
6, 9, 19] suffer at least from the following two limitations: (i) they
offer only a few of the above mentioned aspects and (ii) they
were implemented ad hoc for specific case studies and are not
designed to be easily integrated with other tools or analyses.

In this demo paper, we present a versatile and user-friendly
tool for analyzing time series data based on the pairwise correla-
tions that are visualized in a graph. We propose a workflow in
which the parameters are considered logically, and it allows a
high level of flexibility to visualize and analyze the graphs: the
comparison of two graphs representing subsequences of the data
selected by two different windows; the evolution and changes
of a graph over time by applying a moving window; and a com-
pact heatmap representation of crucial graph parameters for all
possible windows over the data. Throughout the paper, we use
the financial domain to illustrate the key features of the system.
However, the analysis tool can also be applied in other domains,
as we will illustrate in one of the demonstration scenarios. The
tool is online at https://dbs.inf.unibz.it/projects/ismard/, and peo-
ple can use it with their data at hand. In four demo scenarios we
discuss how to use the tool and what can be learned by a data
analyst.

2 SYSTEM OVERVIEW
2.1 Architecture
The system is implemented as a web App based on a client-server
architecture (cf. Fig. 2). On the client side, a user can upload time
series data, set parameters for data pre-processing and graph
computations, and inspect the resulting graphs. By tuning the
parameters in the client side, the web page will perform AJAX
calls and trigger the processing of the data in the server. The
computed graph data is then returned to the client and interpreted
by visualization components. On the client side, two Javascript

Demo

 

 

Series ISSN: 2367-2005 666 10.5441/002/edbt.2021.79

https://OpenProceedings.org/
http://dx.doi.org/10.5441/002/edbt.2021.79


Parameters

View modes:
comparison, evolv-
ing, heat map

(Vis.js & Plotly.js)

Client

Correlation
(Pandas)

MST
(SciPy)

Statistics
(Networkx)

Server

Param & Data

MST & Statistics

Figure 2: System Architecture

libraries are used for the visualization: VIS.js for graph views
and Plotly.js for data reports. On the server side, three Python
libraries are employed: Pandas for correlation computation, SciPy
for MST computation, and Networkx for graph statistics.

2.2 Data and Parameters
The system accepts time series data in CSV format. The first
row specifies the signal names. Each subsequent row stores a
time point followed by the signal values for that time point.
Missing values are marked with NaN. Optionally, a second CSV
file containing ⟨signal name, class name⟩-pairs can be uploaded
in order to group the time signals into classes.

There are a number of parameters that can be controlled by
the user and make the tool flexible for data analytics. For the
preparation of the input data, the user can, among others, spec-
ify a time granularity (e.g., daily, weekly, or monthly) for the
analysis and whether to use the raw data values or the variation
of the value w.r.t. the previous time point. The computation of
the correlations and the construction of the MST/graph can be
controlled by several parameters, including a time range for the
analysis, the required minimum number of values for each signal
for a meaningful analysis, a minimum overlap between two sig-
nals, and a correlation threshold for an edge to be included in the
graph visualization. Finally, for the visualization of the analysis
results three different views are offered.

2.3 Analysis Workflow
The first step in the analysis workflow is to load the raw data
file, store it on the server, and then to optionally apply two pre-
processing operations. First, the user can specify a time granu-
larity for the analysis which is different from the granularity of
the raw data. For instance, in the financial sector the raw data
typically contain the daily closing prices, but financial analysts
often prefer to use weekly or monthly price values in order to
reduce noise. Instead of computing the average, the closing price
of Thursday is used as the weekly price, and the price of the last
trading day of each month as the monthly price. To support the
analysis of data from other domains, the tool also offers the use of
the average value in combination with different granularities. Sec-
ond, the analysis of stock data usually investigates the variation
of the price rather than the price itself. Two different variations
are frequently used: the return rate, which is the relative price
difference to the previous time point, i.e., ri = (pi − pi−1)/pi−1
with pi being the closing price at time point ti ; and the log return
ri = (logpi − logpi−1). The result of the pre-processing phase is
stored in the so-called working file on the server.

The next step is to compute the pairwise correlations matrix
using the Pearson Correlation coefficient. For this, the subse-
quences of the signals that correspond to the specified window
are loaded from the working file into a so-called DataFrame —

an efficient two-dimensional main memory data structure of the
Pandas library, which natively supports the computation of the
Pearson correlation. To obtain robust and reliable results, time
series that contain an excessive number of missing values are
omitted from the computation of the correlation. Similarly, we
do not compute the correlation between two time series if they
do not sufficiently overlap in time. Both parameters can be con-
trolled by the user. For the time series that pass these filters,
the Pearson Correlation coefficient is computed, which for two
time signals x and y with average value x̄ and ȳ, respectively,
is defined as r =

∑n
i=1(xi−x̄ )(yi−ȳ)√∑n

i=1(xi−x̄ )2
√∑n

i=1(yi−ȳ)2
with −1 ≤ r ≤ 1. A

value of 1 indicates total positive linear correlation, a value of −1
total negative linear correlation, and a value of 0 no linear corre-
lation. Instead of analyzing the correlation between individual
stock signals, the user can decide to investigate the stock sectors
(classes), which allows them to gain insights into entire sectors
rather than individual stocks. The signal of a class is computed as
the average of all stock signals belonging to that class. More ad-
vanced aggregation methods are known in the literature, e.g., the
free-float adjusted market-capitalization weighting method [10],
which computes a weighted average based on the stock shares.

Next, we compute the minimum spanning tree (MST) from the
correlation matrix using the classical algorithm by Kruskal [7].
Each node represents a stock signal, and the edges are labeled
with the correlation coefficient between the connected nodes.
As an alternative to the MST, a correlation graph can be used
for the visualization. Since a complete graph would not be very
useful for analysis purposes, the user can prune weak edges by
introducing a threshold for the correlation.

The last step is to compute several statistics for the MST/graph.
A very important measure for the analysis is the degree dis-
tribution of the graph nodes. This measure reflects structural
information of a graph and can be used to detect stock market
events [3, 6]. Other useful statistics include the range of the actual
correlation values and the radius of the MST/graph. Additionally,
we also compute the modularity score [8, 20], which allows us to
measure whether the stock connections in a MST correlate with
the stock sectors. This score is defined as

∑k
i=1(eii −a2

i ), where k
is the number of sectors, eii is the percentage of edges connecting
two nodes of the same sector i , and ai is the percentage of edges
for which at least one node belongs to sector i .

2.4 Interaction and Result Visualization
For the visualization of the analysis results, our tool offers three
principal viewing modes: comparison mode, evolving graphs
mode, and heatmap mode.

The goal of the comparisonmode is to analyze the data over two
different time periods in order to spot similarities and differences,
e.g., comparing a normal period with a crisis period. Figure 3
shows a screenshot of this mode, which contains two panels for
the two graphs. A scroll bar allows users to select a time window
for the analysis. The graphs report the node names (either signal
name or class name), and edges are labeled with the correlation
coefficients. By clicking on a node, additional information is
shown such as the node’s eccentricity and class. A color coding
is used for the graphs. The node color indicates the class of the
represented stock. For the edges, the colors distinguish different
levels of correlation: red for high correlations above 0.7, orange
for medium correlations between 0.4 and 0.7, and gray for low
correlations below 0.4. At the bottom of the screen, the computed
statistics are summarized.

667



Figure 3: Compare MSTs in ordinary period with COVID crisis period.

The evolving graphmode shows the evolution of a graph along
the time axis, which helps to understand the subtle changes of
graph components over time. For this, a sliding window is used,
where the user can specify the window length and the step size.
For each window a graph is computed. To highlight the changes
between consecutive windows, the new edges w.r.t. the previous
graph are shown by dashed lines (cf. Fig. 4).

The heatmap mode helps to understand the stability and re-
liability of a MST metric w.r.t. the values of the selected time
window. For this, we compute a heatmap for three important
graph metrics: first degree score defined as the number of nodes
with degree one divided by the total number of nodes; the modu-
larity score; and the radius. Each heatmap shows the metric for all
possible windows over the data (cf. Fig. 5). The x-axis represents
all possible starting points of time windows, and the y-axis all
possible window lengths. Heatmaps allow users to investigate
whether the metric value changes drastically with different time
windows, as well as discern whether a metric’s values are similar
with time windows that cover special events in the timeline. The
heatmaps are interactive. By clicking on the heatmap, the system
computes the MST over the corresponding window. This allows
us to inspect the MST in detail. Since the computation of the
heatmaps in real time is a computational bottleneck, this feature
is currently only activated for the demo dataset. An efficient com-
putation of the heatmaps for large datasets is part of our future
work.

3 DEMONSTRATION SCENARIOS
The following four scenarios provide a glimpse of how our tool
can be used to systematically investigate behaviors and prop-
erties of time series data. We use the Italian stock market data
collected from Yahoo Finance. This dataset contains the daily
stock prices of 407 companies which traded from January 2019 to
June 2020 and includes the COVID stock crash. The companies
are classified into 12 market sectors, such as financial service,

real estate, energy, etc. In addition, we use a dataset that contains
signals from industrial devices provided by a local company.

Comparing Normal and Crisis Periods. In the first demo
scenario, an analyst is interested in investigating how stock cor-
relations were affected by the COVID crash. This can be observed
by graph shapes and indicators in the comparison mode shown
in Fig. 3. The left-hand side shows the MST over a normal period
(Jan 2019 – Apr 2019), while the right-hand side shows the MST
during the COVID crisis (Jan 2020 – Apr 2020). From the graph
shapes, analysts can observe that the crisis led to the formation of
many star-like hubs and red-color edges, indicating that a large
number of companies were strongly correlated. From the indica-
tors, analysts find that during the COVID crisis the MST had a
much smaller radius and a steeper degree distribution compared
to the normal period. In particular, significantly more nodes had
a degree of 1 during the crisis period. Similar analyses can be
performed for other market events. More details on shapes and
indicators are described in [6]. Moreover, different parameter
values and time windows can be chosen to examine the stability
of the above features.

Changes over Time. In this scenario, an analyst wants to
investigate whether the correlation between different sectors has
changed in proximity to the COVID crash. This type of analysis
is supported in the evolution mode. Figure 4 shows the MST
computed over three consecutive windows over the aggregated
stock signals. The length of the sliding window is three months,
and the step size one month. A dashed line indicates a new edge
compared to the MST over the previous window. It can be ob-
served that the Industrials sector (red node) tends to be at the
center of the tree. Presumably, sectors in Fig. 4c that are con-
nected with Industrials are the most negatively affected sectors
by the COVID crash. In contrast, Healthcare (purple) switched its
connection from Technology to Consumer Cyclical and Utilities.
They could be the positively influenced sectors, since with the
medical research and “stay at home” order, these sectors either
received more investments or increased consumption.

668



(a) 10/2019–01/2020 (b) 11/2019–02/2020 (c) 12/2019–03/2020

Figure 4: Evolving graphs.

Figure 5: Heatmap view.

Concise Overview of All Windows. A critical aspect for
time series analysis is to choose an appropriate window length,
owing to the fact that real-world data are often noisy and contain
missing values. The heatmap mode helps in this regard as it
provides a concise overview of important MST metrics over all
possible windows. An example is shown in Fig. 5 with three
heatmaps for the first degree score, the modularity score, and the
radius of the MST, respectively. It can be observed that for long
time windows (i.e., more than 300 time points) the radius is more
reliable to signal the crisis period. This is explained by a dark
strip at the top border of the heatmap (gray circle in Fig. 5). It
appears that for all long time windows that cover the crisis period,
the radius of the corresponding MST is significantly lower than
the MSTs in normal periods. A similar pattern can be observed
for the heatmap of the first degree score. In this scenario, a user
learns which are sound indicators for detecting crises and the
conditions to use them, e.g., the appropriate window length.

Beyond Stock Data. To show the generality of our tool, we
also provide a demonstration scenario for the analysis of data
from the industrial sector. The time series come from sensors
monitoring components of large industrial printers, such as the
temperature of internal CPUs, ink speed, or belt velocity. In
this scenario, we show how our tool can be used to understand
the interaction of different components, similar to stock sectors,
based on their correlation over different time periods.

4 CONCLUSIONS AND FUTUREWORK
In this demo paper, we presented a new web App to investigate
stock time series data. The key idea is to compute the pairwise
correlations between the data and – in order to facilitate the
analysis – to visualize them in a minimum spanning tree, where
nodes represent the trading companies and edges show their
correlation. With Italian stock market data we demonstrated the
effectiveness and versatility of our tool.

Future work points in two directions. First, we will investigate
more efficient algorithms for the computation of heatmaps in

order to make the tool scalable for larger datasets. The other di-
rection concerns the use of machine learning techniques to detect
useful parameter configurations for the analysis automatically.

ACKNOWLEDGMENTS
This work is supported by the projects ISMarD and TASMA,
which are funded by the Free University of Bozen-Bolzano.

REFERENCES
[1] Amir Aghasadeghi, Vera Zaychik Moffitt, Sebastian Schelter, and Julia Stoy-

anovich. 2020. Zooming Out on an Evolving Graph. In EDBT 2020. 25–36.
[2] Davide Azzalini, Fabio Azzalini, Mirjana Mazuran, and Letizia Tanca. 2019.

Tracking the Evolution of Financial Time Series Clusters. In DSMM@SIGMOD
2019. 4:1–4:5.

[3] AQ Barbi and GA Prataviera. 2019. Nonlinear dependencies on Brazilian
equity network from mutual information minimum spanning trees. Physica
A: Statistical Mechanics and its Applications 523 (2019), 876–885.

[4] Xuewei Cao, Yongbin Shi, Penghao Wang, Liujun Chen, and Yougui Wang.
2018. The evolution of network topology structure of Chinese stock market.
In ICBDA 2018. IEEE, 329–333.

[5] Ricardo Coelho, Claire G Gilmore, Brian Lucey, Peter Richmond, and Stefan
Hutzler. 2007. The evolution of interdependence in world equity markets-
Evidence from minimum spanning trees. Physica A: Statistical Mechanics and
its Applications 376 (2007), 455–466.

[6] Paolo Coletti and Maurizio Murgia. 2016. The network of the Italian stock
market during the 2008–2011 financial crises. Algorithmic Finance 5, 3-4 (2016),
111–137.

[7] Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, and Clifford Stein.
2009. Introduction to algorithms. MIT press.

[8] Santo Fortunato. 2010. Community detection in graphs. Physics reports 486,
3-5 (2010), 75–174.

[9] Raphael H Heiberger. 2014. Stock network stability in times of crisis. Physica
A: Statistical Mechanics and its Applications 393 (2014), 376–381.

[10] S&P Dow Jones. 2014. Index mathematics methodology.
[11] Kyoung-jae Kim. 2003. Financial time series forecasting using support vector

machines. Neurocomputing 55, 1-2 (2003), 307–319.
[12] Ping Luo, Kai Shu, Junjie Wu, Li Wan, and Yong Tan. 2020. Exploring Correla-

tion Network for Cheating Detection. ACM Trans. Intell. Syst. Technol. 11, 1
(2020), 12:1–12:23.

[13] Abdullah-Al Mamun and Sanguthevar Rajasekaran. 2016. An efficient Mini-
mum Spanning Tree algorithm. In ISCC 2016. 1047–1052.

[14] Rosario N Mantegna. 1999. Hierarchical structure in financial markets. Eur.
Phys. J. B 11, 1 (1999), 193–197.

[15] Gautier Marti, Sébastien Andler, Frank Nielsen, and Philippe Donnat. 2016.
Clustering Financial Time Series: How Long Is Enough?. In IJCAI 2016. 2583–
2589.

[16] SalvatoreMiccichè, Giovanni Bonanno, Fabrizio Lillo, and Rosario NMantegna.
2003. Degree stability of aminimum spanning tree of price return and volatility.
Physica A: Statistical Mechanics and its Applications 324, 1-2 (2003), 66–73.

[17] Daniel Petrov, Rakan Alseghayer, Mohamed A. Sharaf, Panos K. Chrysanthis,
and Alexandros Labrinidis. 2017. Interactive Exploration of Correlated Time
Series. In ExploreDB 2017. 2:1–2:6.

[18] Francisco Serdio, Edwin Lughofer, Kurt Pichler, Thomas Buchegger, Markus
Pichler, and Hajrudin Efendic. 2014. Fault detection in multi-sensor networks
based on multivariate time-series models and orthogonal transformations.
Information Fusion 20 (2014), 272–291.

[19] M Wiliński, A Sienkiewicz, Tomasz Gubiec, R Kutner, and ZR Struzik. 2013.
Structural and topological phase transitions on the German Stock Exchange.
Physica A: Statistical Mechanics and its Applications 392, 23 (2013), 5963–5973.

[20] Lisi Xia, Daming You, Xin Jiang, and Quantong Guo. 2018. Comparison
between global financial crisis and local stock disaster on top of Chinese
stock network. Physica A: Statistical Mechanics and its Applications 490 (2018),
222–230.

[21] G Peter Zhang and Min Qi. 2005. Neural network forecasting for seasonal and
trend time series. Eur. J. Oper. Res. 160, 2 (2005), 501–514.

669


	Correlation graph analytics for stock time series dataTong Liu, Paolo Coletti, Anton Dignös, Johann Gamper, Maurizio Murgia

