
Conquering a Panda’s weaker self - Fighting laziness with
laziness
Demo Paper

Stefan Hagedorn
TU Ilmenau

Ilmenau, Germany
stefan.hagedorn@tu-ilmenau.de

Steffen Kläbe
TU Ilmenau

Ilmenau, Germany
steffen.klaebe@tu-ilmenau.de

Kai-Uwe Sattler
TU Ilmenau

Ilmenau, Germany
kus@tu-ilmenau.de

ABSTRACT
The Python programming language has become very popular
among data scientists because of its easy-to-learn syntax and rich
ecosystem of libraries. Especially the Pandas framework is widely
used for various data processing and analytics tasks. However,
due to its memorymanagement and eager evaluation Pandas does
not scale and workstations quickly come to their limits even for
moderate data set sizes. With Grizzly, we introduce a framework
that produces SQL queries for operations on DataFrames, moving
complexity from workstations to database servers. Grizzly allows
to not only access data already stored in a database, but also to
combine it with external data from files. Furthermore, users can
use their own user-defined functions or use Grizzly’s model join
feature to easily apply machine learning models to data, both
being executed inside the database server. This allows for fast and
scalable data analytics operations, even with a small workstation.

1 INTRODUCTION
Data Science and Machine Learning are hot topics, not only in
research but also in industrial and commercial applications. Al-
though the terms Data Analysis and Data Science date back to the
early 1960s and 1970s, respectively, with the rise of Big Data in
the early 2000s more and more companies started to collect and
analyze every piece of information they could generate about
their, e.g., sales and customers with the goal to gain insights
that help to improve the companies productivity and business.
One of the standard languages for data science tasks is Python
(besides Julia and R). Python has become very popular because of
its easy to learn syntax that allows to quickly build prototypical
data processing pipelines. One of the most popular libraries for
Python in the field of data analytics is Pandas. It allows to easily
load data from various sources and represents it in DataFrames–
a table-like abstraction with column names, types and more meta
information. Using Pandas, one can load data in various formats
from local or remote locations into DataFrames and apply opera-
tions such as projection, filter, grouping, join – all well known
from the relational algebra. In Pandas, these operations are exe-
cuted on the local machine of the data scientist and create copies
of the data in the local RAM. Since this is slow and means larger-
than-RAM data sets cannot be processed easily, data scientists
who should actually focus on their data analytics tasks, started
to build their custom solutions for parallel processing or buffer
management. However, the database community has built fast,
robust, and scalable systems to perform exactly this kind of op-
erations efficiently, even if the complete data set does not fit into

© 2021 Copyright held by the owner/author(s). Published in Proceedings of the
24th International Conference on Extending Database Technology (EDBT), March
23-26, 2021, ISBN 978-3-89318-084-4 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

RAM. Often the data to analyze is already stored in such reliable
database systems. Thus, instead of moving the data from the large
DBMS server into the potentially small data scientist’s laptop for
processing, the operations defined in the Python script should
be transferred to the DBMS and be translated into a language it
understands, i.e. SQL.

During recent years, a few systems have been developed to
address these needs, such as RIOT-DB [12], AIDA [3], Modin
[9], AFrame [10], and IBIS1. IBIS was initiated by the creators of
Pandas and tries to overcome the scalability issues of Pandas by
using lazy evaluation and converting operations on DataFrames
into a (sequence of) SQL queries. However, it is not possible to
join data from different database systems and UDFs can only be
executed using the Pandas backend (i.e. local execution) or on
Google Big Query. The DataFrame concept has also been adopted
by other frameworks like Apache Spark [11], Koalas2, and Nvidia
Rapids3. Internally, these systems use optimizers to tune the
query and produce good execution plans. The idea of providing
a DataFrame API over graph data has been studied for example
in [2] and [8].

In this paper, we demonstrate our Grizzly4 framework for tran-
spiling Python code to SQL queries, with the following features:

• Grizzly uses query-shipping and lazy evaluation to achieve
high scalability.

• It supports relational operations in standard SQL syntax
and uses configurable templates for DBMS-specific dialects
without changing the underlying execution system.

• External data can be combined with in-DBMS data.
• Users can define their own functions (UDFs) in Python to
apply within the generated query.

• Grizzly uses the UDF mechanism to load and execute pre-
trained machine learning models inside the database.

In our demonstration, we show how easy it is to exchange Pandas
with Grizzly as the execution engine for DataFrame programs.
Using a web application, users can compare Pandas and Grizzly
scripts, either using our provided examples for various scenarios
or writing own code, side-by-side and run them on prepared
datasets. Our demo system automatically generates comparison
charts for query performance andmemory consumption. As these
charts are maintained over multiple runs, users can built their
own evaluations by varying parameters like the dataset size.

2 REQUIREMENTS
Companies typically store their valuable data in some durable
and integer database. This database consists of various tables,

1http://ibis-project.org/
2https://www.github.com/databricks/koalas
3https://developer.nvidia.com/rapids
4https://github.com/dbis-ilm/grizzly

Demo

Series ISSN: 2367-2005 670 10.5441/002/edbt.2021.80

https://OpenProceedings.org/
http://dx.doi.org/10.5441/002/edbt.2021.80

containing, e.g., the customer information, the products the com-
pany sells, and of course the orders the customers have made over
time. This basically resembles the well-known TPC-H [1] bench-
mark and for larger companies this database can quickly store
several GBs. Below we briefly describe use case scenarios from
which the requirements for a system that shifts the processing
into the DBMS can be derived.
Basic Data Processing. As an example use case, a data scientist
may be interested in the names of the customers, who ordered a
specific product most often. Using Pandas, the scientist would
load the tables customer, orders, and products onto her local
workstation and then filter the products by the product name she
is interested in, join the remaining products with orders and then
with customers. Finally, the join result may be grouped by the
customer and aggregated to count how often they have ordered
the specific product.

At this point we would like to emphasize that with Pandas, all
these processing steps take place in the scientists workstation and
not on the actual database server that stores this data. Though,
Pandas is able to send a SQL query to a database server in order
to fetch proprocessed data. However, we argue that many data
scientists often don’t know or use SQL and prefer their higher
level languages. Thus, to improve the query performance and
often make the evaluation possible at all, the computational part
should be shifted into the database server while letting the users
still express their analysis tasks in Python.
Accessing External Data. After getting these top customers,
the data scientist needs to find out how these products are per-
ceived in social media platforms. The company may track social
media posts using some additional systems and collects the prod-
uct reviews in a text file. However, these posts are not critical to
the company and are not ingested into the DB. Thus, the data
scientist needs to join the data in the DB with the data in files.
Currently, this operation would typically also be executed on the
workstation, but should optimally be executed by the DBMS. In
order to do so, the DBMS must import the file as a (temporary)
table. This import should be transparent to the user so that she
only needs to specify a file path, but does not have to bother with
DBMS specific import code.
UDFs & Model Join. The well-known data processing libraries
all provide a vast variety of algorithm implementations and op-
erators for various tasks. However, these may not be enough for
every problem to solve and users fall back to implement their
own logic in user-defined functions which they want to apply.
Such functions could either be applied to every record individu-
ally or to one table/data set as a whole. Again, the function could
be applied on the workstation using Pandas, but then subsequent
operations which could be handled in the DBMS are not possible
anymore. Thus, the function’s code should also be shipped to the
database server transparently for convenient execution.

A special case is the application of some existing machine
learning model. An existing model like RoBERTa [6] may be
trained to detect the sentiment of some text, i.e. if it is positive
or negative. After the data scientist joined the top customers and
products with the product reviews from a text file, she needs to
classify how the reviews rate the corresponding product. Thus,
she needs to join the model with the data (intermediate query
result) in the database. For this, it must be possible to select and
load an existing model and join it with the data in the database,
i.e. apply it to every tuple of a table/intermediate result. In further
discussion we name this concept model join.

Code
Generator

DBMS

R
S ⨝

𝜎

co
n
stru

cte
d

o
p

e
ra

to
r tre

e

DB connection

r = g.load("R")
s = g.load("S")

import grizzly
 as g

j = r.join(s)
j = j[j['a'] == 1]

if 2 > 1:

else:
 ...

DataFrame API

SQL
Plugin

Executor Service
Query

Figure 1: Overview of Grizzly’s architecture.

load table (t0)
df = grizzly.read_table("tab")
projection to a,b,c (t1)
df = df[['a','b','c']]
selection (t2)
df = df[df.a == 3]
group by b,c (t3)
df = df.groupby(['b','c'])

(a) Source Python code.

tab
t0

π
a,b,c

𝜎
a = 3

𝛾
b,c

t1

t2

t3

(b) Opera-
tor tree.

SELECT t3.b, t3.c FROM (
SELECT * FROM (
SELECT t1.a, t1.b, t1.c
FROM (
SELECT * FROM tab t0

) t1
) t2 WHERE t2.a = 3

) t3 GROUP BY t3.b, t3.c

(c) Produced SQL query.

Figure 2: Steps for transpiling Python code to a SQL query:
The operations on DataFrames (a) are collected in an inter-
mediate operator tree (b) which is traversed to produce a
nested SQL query (c).

3 GRIZZLY ARCHITECTURE
The scalability issues of the Pandas framework are a consequence
of two major bottlenecks:

• Pandas operations are executed eagerly, producing nu-
merous intermediate results that increase the memory
consumption of a Pandas program.

• Pandas uses the data-shipping paradigm, which means
that data is transferred to the place where the program
is executed. Despite being easy to use, the data-shipping
paradigm limits scalability as potentially large amounts of
data are transferred. Operators are executed on the client-
side, which usually consists of weaker hardware compared
to (cloud) servers.

The design of the Grizzly framework focuses on solving these
two problems. First, Grizzly replaces the eager operator execu-
tion approach with a lazy approach by collecting operators and
generating a query when the result is needed. Second, Grizzly
combines the convenience of the data-shipping paradigm with
the scalability of the query-shipping paradigm by abstracting
from data access and pushing query execution to the DBMS.

An overview of the Grizzly architecture is given in Figure 1.
Grizzly provides a Pandas-like DataFrame API for compatibility
with existing Pandas programs. In order to achieve the lazy exe-
cution paradigm, Grizzly collects operators and builds a lineage
graph as an internal query representation, following a similar
approach as RDDs in Apache Spark [11]. Operators are classified
as transformations (e.g. projections, filters, joins) or actions (e.g.
show, count, sum). While transformations are collected in the
lineage graph, actions trigger code generation and execution. In
order to meet the second design goal of using the query-shipping

671

paradigm, Grizzly transpiles the lineage graph of DataFrame to
standard SQL, compatible with a broad range of DBMSs. The
transpilation is achieved by traversing the lineage graph and
using a mapping between DataFrame operators and SQL query
constructs, which is described in detail in [4]. There are two
options for incrementally constructing a SQL query:

(1) Incrementally extend SELECT, FROM and WHERE blocks of a
(single) SQL query, or

(2) generate a separate query for each operator and nest the
existing query in the FROM clause.

While producing more compact and easier-to-read queries, op-
tion (1) has the drawback that nesting is still required in some
cases, e.g. for a filter on a computed column. These cases re-
quire special handling in the code generation as well as a careful
naming. We observed that modern query optimizers of existing
DBMSs have excellent capabilities for unnesting queries, and
thus decided to follow option (2) and apply a generic naming
schema for sub-queries. Queries are send to the DBMS using a
standard connection object as specified by PEP 2495. Additionally,
Grizzly uses a template file in order to match vendor-specific SQL
dialects. An example workflow for transpiling a Pandas program
into a nested SQL query is shown in Figure 2.

4 API EXTENSIONS
Modern data analytics tasks not only use traditional operators,
but also include the use of external data sources, user-defined
functions (UDFs) or machine learning models for prediction or
classification as we argued in the use case discussion in Section 2.
In order to address these challenges, we extended the DataFrame
API of Pandas with a set of operators. All additional operators
are designed with the goal of hiding complexity and providing
an easy-to-use interface for complex operations.

The basic approach of supporting the described features is
the generation of additional queries to create functions or define
external data sources. Such queries are required to be run before
the actual analysis starts. Grizzly maintains a list of pre-queries
and whenever the lineage graph traversal reaches an operator
that requires a pre-query, it is generated and appended to the
list. Finally, all pre-queries are automatically executed before the
actual generated query.
External Data Sources. Various database systems offer support
for external data sources by creating a table over a file, e.g. using
foreign data wrappers in PostgreSQL or external tables in Actian
Vector. Similar to ordinary database tables using read_table,
external tables can be used as leaf nodes in the lineage graph.
Grizzly offers the read_external_table function for this, which
takes the path to the external source as well as the schema as
parameters and returns a DataFrame for further usage. During
code generation, the external table is generated using a pre-query
and given a temporary name to be referenced in the actual query.
UDF Support. In Pandas, users can apply custom functions to
DataFrames using the apply function in an elementwise fashion
(scalar UDFs) or as a reduce function (table UDFs). Modelling the
apply operator as an action, and therefore executing the subquery
and applying the UDF at the client side, has the major drawback
that further operators also need to be executed at the client side.
In order to avoid this, we model UDFs as transformations in
Grizzly by exploiting the recent upcome of Python UDF support
in database systems. The source code of the UDF is accessed via
reflection and transferred to the database system using a UDF

5https://www.python.org/dev/peps/pep-0249/

Define conversion functions
def input_to_model(a: str):

...
def model_to_output(a) -> str:

...

Use external file
df = grizzly.read_external_table("path/to/file", schema, options)
Apply onnx classification model using conversion functions
df['class'] = df['text'].apply_model("/path/to/model",

input_to_model, model_to_output)↩→
Count elements per classification
df = df.groupby('class').count()
Trigger execution and show result
df.show()

Listing 1: Example for external file usage and model join

creation as a pre-query. The function is created with a generic
name and is then applied in the actual query in the projection
list. Note that many database systems currently only support
scalar UDFs and only offer this feature as a beta version due to
security concerns. Consequently, Grizzly is currently also limited
to scalar UDFs and requires the vendor-specific activation of the
UDF feature in order to support UDFs. As a result of modelling
UDFs as transformations, UDF computation can also be pushed
to the database, enabling efficient subsequent operations on the
UDF result.
Machine Learning Model Join. Database systems are a non-
optimal environment for training complexmachine learningmod-
els, as this task is mainly performed on massively parallel engines
like GPUs and involve a hybrid workload of intensive compu-
tations as well as large updates of e.g. weights in the model.
However, there are various pre-trained models available that
can be easily used for data analytics, e.g. in the Model Zoo on
Github6. Applying machine learning models to data is a special
case of UDFs and can also be applied to Pandas DataFrames using
the apply function and handcrafted code for model execution.
Grizzly offers a family of specialized apply functions for the
most popular model formats and execution engines PyTorch7,
Tensorflow8 and ONNX9. Similar to UDFs, these operators are
modelled as transformations and designed for comfortable usage,
demanding only necessary, model type specific parameters from
the user. The generated code for model execution (application) is
handled like a UDF: it is defined in the database system using a
pre-query and used in the projection list of the generated SQL
query. For a more detailed discussion of challenges that come
with this features and their solutions in Grizzly, we kindly refer
to [5].

For the discussion of the presented features we assume that
necessary files like data sources or machine learning models are
accessible from the database server and that required Python
modules are installed. We argue that using cloud file systems or
NAS storage this is not a limitation and that root access or con-
tacting the database administrator is currently necessary anyway
in order to use the UDF feature.

As an example, Listing 1 shows a program that loads an ex-
ternal file, applies a classification model in the ONNX format
on column text and then counts the number of entries per class.
ONNX models are typically provided with conversion functions
to convert an input to a tensor and convert the output tensor

6https://www.github.com/onnx/models
7https://www.pytorch.org/
8https://www.tensorflow.org/
9https://www.github.com/onnx/

672

Figure 3: Screenshot of the Grizzly Web Application.

back. The type hints in the signature of these functions are used
to determine the type of the overall UDF. The types are required
to define the functions in SQL. Grizzly generates pre-queries for
the external table and the UDF, ultimately executing three SQL
statements.

5 OBSERVING THE BEARS IN THEWILD
The demonstration highlights the benefits users can expect when
using Grizzly over Pandas. It invites visitors to interact with the
system over a web application and Jupyter notebooks.

The application lets users choose between prepared scenarios,
but also allows to run own scripts. For both cases we provide a
pre-loaded collection of data sets (from TPC-H [1] and IMDB [7])
with varying sizes. The scenarios range from simple queries to
more complex tasks that make use of the features we explained in
the previous sections: executing UDFs, combining existing tables
with external files, and performing the model join. For every
scenario, a prepared Grizzly and Pandas script can be selected
and executed. The side-by-side code editors demonstrate how
similar the Grizzly and Pandas APIs are, but especially for the
model join this will also highlight how much work Grizzly saves
developers compared to Pandas. Using the “Show SQL” button,
one can inspect the SQL query Grizzly transparently generates
for an entered Python program. As an example, the model join
scenario offers different models available in ONNX, PyTorch, and
Tensorflow format to classify entries in the tables. It follows the
use case described in Section 2: We connect to a movie database
and join this data with reviews from a text file and classify every
movie using a pre-trained model into the categories positive and
negative. The final result is grouped in order to count the number
of positive and negative reviews per movie. The Grizzly code is
as easy as shown in Listing 1, being significantly smaller than the
respective Pandas implementation. Additionally, the application
shows the effort to handcraft the SQL code, which is transparently
generated by Grizzly. Users can also compare the external table

feature of Grizzly to the respective read_csv feature of Pandas as
sketched in Figure 3 and observe a significant performance gain
when using Grizzly. The web application tracks the execution
time as well as the memory consumption during the execution
of a program over multiple runs and visualizes both metrics for
comparison. Through the collected result graphs and by using
our input data sets of different sizes, users can build their own
evaluation and investigate the scalability of the systems.

A second part of the demonstration uses Jupyter notebooks to
demonstrate the easy integration of Grizzly in such environments
and how it can be used to process and visualize data and query
results interactively.

REFERENCES
[1] Peter A. Boncz, Thomas Neumann, and Orri Erling. 2014. TPC-H Analyzed:

Hidden Messages and Lessons Learned from an Influential Benchmark. In
Performance Characterization and Benchmarking. Springer, 61–76.

[2] Ankur Dave, Alekh Jindal, et al. 2016. GraphFrames: an integrated API for
mixing graph and relational queries. In GRADES. ACM, 2.

[3] Joseph Vinish D’silva, Florestan D. De Moor, and Bettina Kemme. 2018. AIDA -
Abstraction for advanced in database analytics. VLDB 11, 11 (2018), 1400–1413.

[4] Stefan Hagedorn, Steffen Kläbe, and Kai-Uwe Sattler. 2021. Putting Pandas in
a Box. In CIDR.

[5] Steffen Kläbe and Stefan Hagedorn. 2021. When Bears get Machine Support:
Applying Machine Learning Models to Scalable DataFrames with Grizzly. In
BTW.

[6] Yinhan Liu, Myle Ott, et al. 2019. RoBERTa: A Robustly Optimized BERT
Pretraining Approach. arXiv:1907.11692

[7] Andrew L. Maas, Raymond E. Daly, et al. 2011. Learning Word Vectors for
Sentiment Analysis. In ACL-HLT. Portland, Oregon, USA, 142–150.

[8] Aisha Mohamed, Ghadeer Abuoda, et al. 2020. RDFFrames: Knowledge Graph
Access for Machine Learning Tools. Proc. VLDB Endow. 13, 12 (2020), 2889–
2892.

[9] Devin Petersohn, William W. Ma, et al. 2020. Towards Scalable Dataframe
Systems. Proc. VLDB Endow. 13, 11 (2020), 2033–2046.

[10] Phanwadee Sinthong and Michael J. Carey. 2019. AFrame: Extending
DataFrames for Large-Scale Modern Data Analysis. In Big Data. 359–371.

[11] Matei Zaharia, Mosharaf Chowdhury, et al. 2012. Resilient distributed datasets:
A fault-tolerant abstraction for in-memory cluster computing. In USENIX.

[12] Yi Zhang, Herodotos Herodotou, and Jun Yang. 2009. RIOT: I/O efficient
numerical computing without SQL. In CIDR.

673

	Conquering a Panda's weaker self - Fighting laziness with lazinessStefan Hagedorn, Steffen Kläbe, Kai-Uwe Sattler

