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ABSTRACT
JSON Schema is an evolving standard for the description of JSON
documents. It is an extremely powerful language endowed with
boolean operators and recursive definitions. Hence, classical prob-
lems like schema consistency and equivalence may be challenging
without well-principled tools. Based on our recent effort for lay-
ing down an algebraic formal semantics of JSON Schema, we
demonstrate an approach for generating valid witnesses of a user-
defined schema. Our goal is not only to allow programmers to
design schemas that meet their intentions, but also to guide
them in their journey to understanding the semantics of existing
schemas, in an interactive fashion. We thus aim to contribute to
the adoption of the JSON Schema language by facilitating its use.

1 INTRODUCTION
In recent years, JSON has become the de facto standard data in-
terchange format, and is now widely used for exchanging data
between web applications and remote servers, for exporting and
importing data, as well as inside complex ML pipelines for com-
bining different stages, as in Google TFX [11].

Despite its great popularity, there is no consensus about a
standard schema language for JSON yet. Indeed, in many cases,
JSON datasets come without a schema, and the end user or appli-
cation has the duty to infer or guess a new schema, if required. In
many other cases, however, several and vastly different schema
languages are used for describing the structure of JSON data,
ranging from Apache Avro [3], to the MongoDB internal schema
language [6], and to JSON Schema [12].

Differently from what happened with XML, whose standard
schema languages (DTDs and XML Schema) reached quickly a
wide diffusion, JSON Schema is not being adopted at the same
pace. Many reasons are slowing down its adoption, but, accord-
ing to our observations, a major obstacle is the fact that, while
extremely powerful, JSON Schema is – frankly – hard to use. In-
deed, a schema is a logical combination of implicative assertions,
and some of them may produce side effects on previous ones.

As a consequence, leaving the realm of plain vanilla schemas
may expose the programmer to many risks, such as the definition
of a schemawith unintended semantics, or one that is even empty.
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Example 1.1. Consider the following schema.
{

"type": "object",
"properties": {

"x": { "type": "integer" }
},
"required": [ "x" ]

}

This schema declares that all instances are JSON objects, and
that each object has a mandatory member whose name is x and
whose type is inteдer . This schema, however, does not impose
further constraints on object values; therefore, an object may
also have supplementary and unconstrained members.

Example 1.2. Consider now the following schema, differing
only in the next-to-last line.

{
"type": "object",
"properties": {

"x": { "type": "integer" }
},
"not": { "required": [ "x" ] }

}

One may assume that this specifies that x is “not required”,
hence is optional. However, given the semantics of JSON Schema,
negating a required member does not make it optional: indeed,
the final effect is to actually forbid the presence of the mem-
ber, hence excluding any JSON object having a member whose
name is x (this example is inspired by a discussion on Stack Over-
flow [1], where the confusing effect of this schema is testified).

Given the complex and non-trivial interplay between schema
assertions, designing a rich yet sound schema is challenging,
especially when other powerful mechanisms of JSON Schema are
involved, such as negation, mutual exclusion, recursion, union
and conjunction, as well as array constraints controlling array
length and content, possibly requiring uniqueness of elements.

Motivating Witness Generation. The state-of-the-art approach
for exploring JSON Schema semantics is ultimately a manual trial
and error: using a JSON Schema validator, a schema designer can
test whether a JSON document is valid w.r.t. the schema. That is,
the designer must come up with suitable witness documents.

Yet, in this demo, we present a tool capable of automatic wit-
ness generation. For instance, for the schema from Example 1.1,
our tool generates the witness {"x": 0}, as any valid instance
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must be an object, where member x is mandatory and integer-
typed. For Example 1.2, our tool generates the witness {}, since
the empty object is valid. For the schema designer, this valuable
feedback may well increase the overall productivity.

Moreover, upon the push of a button, the designer can gener-
ate further witnesses. In the example just discussed, the designer
would be provided with {"0": null}. Thus, by interactive itera-
tion, the designer ensures that he or she “gets it right”.

Moreover, our tool allows the comparison of two schemas: for
a witness that is valid w.r.t. the schema from Example 1.2, but
not w.r.t. the schema from Example 1.1, the tool returns the JSON
document {}. For the other way round, a witness is {"x": 0}.
Again, the designer can request further witnesses, as needed.

Contributions. The goal of this demonstration is to showcase
a tool allowing the schema designer to investigate the formal
properties of a schema, and even to compare schemas. Our tool
is based on our earlier contributions on algebraic manipulations
of JSON Schema [7]. With our tool, the designer can:

• obtain an algebraic representation of the input schema;
• generate a witness for the schema, to verify whether the
schema is empty or not, and to gain insights into the actual
semantics of a given schema;

• exploit witness generation for checking whether a schema
S1 is a subtype of a schema S2, and hence, whether it
represents a conservative and not disruptive evolution.

This combination of features is currently not supported by
any existing commercial or academic tool: while tools for JSON
Schema containment checking are available (e.g., [9]), theymerely
produce boolean answers. Ours is the first tool capable of gener-
ating actual witnesses in containment checking.

2 JSON AND JSON SCHEMA
In the following, we introduce the JSON data model and provide
some intuition for JSON Schema. We refer to [7, 10] for details.

2.1 JSON data model
The grammar below captures the syntax of JSON values, which
are either basic values, objects, or arrays. Basic values B include
the null value, booleans, numbers n, and strings s . Objects O
represent sets of members, each member being a name-value
pair, and arrays A.

J ::= B | O | A JSON expressions
B ::= null | true | false | n | s Basic values

n ∈ Num, s ∈ Str
O ::= {l1 : J1, . . . , ln : Jn } Objects

n ≥ 0, i , j ⇒ li , lj
A ::= [J1, . . . , Jn ] n ≥ 0 Arrays

2.2 JSON Schema
JSON Schema is a language for defining the structure of JSON doc-
uments, maintained by the Internet Engineering Task Force [4].

JSON Schema uses the JSON syntax. Each construct is defined
using a JSON object with a set of fields describing assertions
relevant for the values being described. Some assertions can be
applied to any JSON value type (e.g., type), while others are more
specific (e.g., multipleOf applies to numeric values only). The
syntax and semantics of JSON Schema have been formalized
in [10] following the specification of Draft-04. We limit ourself to

an informal discussion about the possible constraints associated
to each type:

• when defining a string, it is possible to restrict its length
by specifying minLength and maxLength constraints, and
to define the pattern that the string should match;

• when defining a number, it is possible to define its range
of values (by any combination of minimum / exclusiveMi-
nimum and maximum / exclusiveMaximum), and to define
whether it should be multipleOf a given number;

• when defining an object, it is possible to define its proper-
ties, the type of its additionalProperties and the type of the
properties matching a given pattern (i.e., patternProperties).
It is also possible to restrict the minimum and maximum
number of properties using minProperties and maxProper-
ties, and to indicate which properties are required;

• when defining an array, it is possible to define the type of
its items and the type of the additionalItems which were
not already defined by items, and to restrict the minimum
andmaximum size of the array;moreover, it is also possible
to enforce uniqueness of the items using uniqueItems.

JSON Schema allows the combination of assertions using stan-
dard boolean connectives: not for negation, allOf for conjunction,
anyOf for disjunction, and oneOf for exclusive disjunction. A
finite set of accepted values can be indicated through the enum
constraint. Please note that hereafter, as well as in our formal
development [7], we will use in some examples the usual notation
for boolean operators (e.g., ∨/¬/∧ for disjunction/negation/con-
junction) and the symbols S/Si to indicate schema fragments.

3 WITNESS GENERATION
Witness generation is challenging for JSON Schema, in particular
due to the non-algebraic nature of JSON Schema (the meaning
of certain assertions depends on the surrounding context), and
because of the presence of negation and conjunctive schemas.
We elaborate on these facts, and describe some main aspects of
the formal systems and algorithms we devised. We will provide
the full details in a future publication.

In a nutshell, our approach proceeds as follows. Assume that
you have an algorithm to generate a witness for any schema
assertion S of size up to n. In order to generate a witness for a
schema of size n + 1 describing objects having a field of label l
and value of type S , one will generate a witnessw for S and use
it to build an object with a field label l whose value isw .

For disjunction S1 ∨ S2, we recursively generate witnesses
of S1 and of S2. Yet negation and conjunction are problematic,
as there is no way to generate a witness for ¬S starting from a
witness for S , and, given a witness for S1, if this is not a witness
for S1 ∧ S2, we may need to try infinitely many others before
finding one that satisfies S2. As we will see, since conjunction is
used for object and array schemas, dealing with conjunction is
particularly important for generating these two kinds of values.

Dealing with these challenges requires schema manipulations
that can be rather complex. In order to devise the necessary
schema transformation rules, as well as to study their properties
and optimization techniques, we designed an algebra which is at
the same time minimal and fully compliant to JSON Schema.

Details can be found in [7], but just to have a glimpse, consider
the following JSON Schema fragment describing properties of
label-value members of object values. In this fragment, we have
a conjunction of assertions satisfied by a JSON value J if the
following holds: if J is an object then i) if a ki label is present,
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then its associated value meets Si , ii) if a label k ′ is present,
satisfying a pattern (regular expression) ri , then its associated
value satisfies PSi , iii) for all other labels in J not satisfying the
previous conditions, the associated value satisfies S , iv) a member
with label k1 is required.

"properties" : {"k1" : S1, . . . , "kn" : Sn },
"patternProperties" : {"r1" : PS1, . . . , "rm" : PSm },

"required" : ["k1"],
"additionalProperties" : S

In this example, we can see the non-algebraic nature of JSON
Schema: the semantics of one assertion (additionalProperties)
depends on a co-occurring assertion (properties).

Our algebra encapsulates possibly interacting assertions into
one, as shown below.

props(k1 : ⟨S1⟩, . . . , kn : ⟨Sn⟩, r1 : ⟨PS1⟩, . . . , rm : ⟨PSm⟩; ⟨S⟩)
∧ req(k1)

In the above algebra expression, we use k to indicate the JSON
pattern "̂ k$" that only matches k , and ⟨S ′⟩ to indicate our algebra
expression corresponding to a schema S ′.

By relying on this algebra, in order to deal with schemas ¬S
for enabling witness generation, we follow a traditional approach:
we push negation inside S by playing with standard boolean laws,
in order to obtain an equivalent, not-free schema that we use
for witness generation. Unfortunately, JSON Schema does not
enjoy negation closure: there are JSON schemas for which not-
elimination is not possible. So we have extended our algebra with
several new basic operators ensuring negation closure (that can
be produced by not-elimination), and for which witness genera-
tion is possible in an inductive fashion, after further rewritings
that we are going to exemplify. One of such operators is

pattReq(r1 : S1, . . . , rn : Sn )

In order for a value to be an instance of the schema above, if the
instance is an object, then, for each i ∈ {1..n}, it must possess
a member whose name matches ri and whose value satisfies Si .
(It is worth observing, that it is strictly more expressive than
required since it allows one to require a name that belongs to
an infinite set L(ri ), and it associates a schema Si to each required
pattern ri .)

A second challenging aspect is related to conjunction. In order
to deal with conjunctive schemas we rely on standard rewritings,
enabling the transformation into equivalent schemas in Disjoint
Normal Form, which is more amenable for witness generation.

Unfortunately, DNF rewriting is not sufficient, because some
mutual dependencies still remain among factors of conjunctions
after DNF transformations. This means that we need to effectively
push DNF transformation (as well as other operators) a step
further in an unconventional fashion. The approach we have
devised can be illustrated by the following example, where we
focus on object schemas.

We use here JSON regular expressions (patterns), where ˆ
matches the beginning of a string, [ˆabc] matches any one char-
acter different from a, b and c , a dot . matches any character, $
matches the end of the string, so that “ˆa[ˆb].” matches acccccc
and acc but does not match ac , because the dot after the “ˆa[ˆb]”
requires a third letter (carefully consider the dots in the patterns).

The expression below is a conjunction that we obtain bymeans
of DNF transformations. We use the notation {Obj, S1, . . . , Sn } to
denote a group of statements whose conjunctionObj∧S1,∧ . . .∧

Sn describes object values (we can also have array groups, etc.).
Also note that t stands for the schema accepting any value.

{Obj, props(ˆa : S1), props(ˆ .b : S2),
pattReq(ˆ .d : t), pattReq(ˆa : S3)}

A possible plausible witness generation strategy for this group
would start considering pattReq constraints, but we need to keep
into consideration possible interactions with other patterns in
the object type, so we should first generate a witness for pattReq
constraints, then checking whether props() are satisfied by the
candidate witness, and if it is not the case, go back to pattReq
and so on, by possibly infinite loops. To avoid this we rather
manipulate the object group in order to be able to focus on subex-
pressions of the newly obtained object schema where, in some
sense, all possible interactions are finitely enumerated, so that
they can be dealt with separately.

Rather than providing the step-by-step process that produces
this expansion, we show below the final result.

props(ˆa : S1), props(ˆ .b : S2) →
ˆa[ˆb] : S1, ˆab : S1 ∧ S2, ˆ [ˆa]b : S2, ˆ [ˆa][ˆb] : t

pattReq(ˆ .d : t) →
orPattReq(ˆad : S1 ∧ S3, ˆad : S1 ∧ ¬S3, ˆ [ˆa]d : t)

pattReq(ˆa : S3) →
orPattReq(ˆad : S1 ∧ S3, ˆa[ˆbd] : S1 ∧ S3,

ˆab : S1 ∧ S2 ∧ S3),

In the props()-part the set {ˆa, ˆ .b} has been divided into three
disjoint parts {ˆa[ˆb], ˆab, ˆ [ˆa]b} by separating the intersection
ˆab from the two original patterns, and the set is completed with
ˆ [ˆa][ˆb] : t. Note that these new patterns can be obtained by
means of standard techniques, thanks to the well-known closure
properties of regular expressions.

The first request pattReq( ˆ .d : t) is split into three differ-
ent cases. The first ˆad : S1 ∧ S3 is in common with the other
orPattReq (an internal operator introduced to decompose pattReq
into disjoint components), while the case ˆad : S1 ∧ ¬S3 is inter-
nally and externally split, thanks to the ¬S3 factor in the schema,
and ˆ [ˆa]d is pattern-disjoint thanks to the initial [ˆa]. You can
also observe that ˆad : S1∧S3 internalizes the requirement ˆa : S1,
the same holds for ˆad : S1 ∧¬S3, while ˆ [ˆa]d only matches the
trivial requirement, hence maintains its t schema.1

The second pattReq is split into three cases as well, in order
to bring into view the intersection with the first pattReq, and in
order to internalize the constraints of the props()-part.

This splitting effort is needed in order to be able to enumerate
and try all the possible ways of satisfying a set of requests. For
example, in this case the two orPattReq requests share the first
component ˆad : S1 ∧ S3, and contain two more components
each, all of themmutually incompatible, hence having a structure
orPattReq(a,b1,b2), orPattReq(a, c1, c2). Hence, we know that
there are exactly 5 ways of satisfying both: either by generating
a single member that satisfies a, or by generating two members
that satisfy, respectively, (b1, c1), (b1, c2), (b2, c1), (b2, c2), and
our witness generation algorithm will try to pursue all, and only,
these five approaches.

Even array groups obtained by DNF rewriting need prepara-
tion, by a different approach, which we cannot detail here, for

1As we have introduced not-schemas, notably ¬S3 , we re-apply not-elimination.
For space reasons we do not delve into these aspects.
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space reasons. Also, we have omitted how we deal with recursive
definitions, both in not-elimination and witness generation.

This algorithm has an overall exponential complexity. How-
ever, we have designed techniques thatmake the problems tractable
for many real-world schemas, and we are currently measuring
their effectiveness.

4 DEMONSTRATION OVERVIEW
Our demo setup includes these datasets: we explore schemas from
the JSON Schema Test Suite [2], a collection of small schemas that
serve as unit tests for JSON Schema validators (and explore differ-
ent operators), and real-world schemas from SchemaStore.org [5].
Naturally, our attendees may also formulate their own schemas.

We next describe the analysis for single schemas in more detail,
and then remark on how attendees may also compare schemas.

Witness generation. Our tool is implemented as a Spring web
application, with a Java backend. Our prototype does not yet
support the operators uniqueItems and repeatedItems. Figure 1
shows a screenshot of the analysis of a single schema.

Typically, the user will first enter a JSON Schema document (or
load one of the provided schemas), and then convert the schema
(shown in the midsection of our screenshot) into our algebra
(shown in the bottom section). Our algebra has been designed to
be close to the original language, to be intuitive for practitioners.
Yet different from the JSON Schema language, our algebra enjoys
substitutability, that is, the semantics of an operator does not
depend on its context, which eases manipulation.

The user may then choose to generate a first JSON witness. If
the system finds no witness, it will alert the user that the schema
is empty, otherwise, a witness is generated.

If there is a witness, the user can generate a further (“yet
another”) witness, that is different from all those previously seen.
Alternatively, the user can edit the original JSON Schema, or
directly the algebraic expression, and request that a new first
witness is generated (disregarding witnesses already seen).

The schema designer can choose to convert back from the
algebra to JSON Schema. Thus, the schema designer can interac-
tively explore the semantics of a given schema, switch between
the JSON Schema representation and the (often more compact)
representation in our algebra, and iteratively revise the schema.

To allow interested demo attendees to inspect the internals of
witness generation, as outlined in the previous section, our tool
can also perform negation elimination on algebraic expressions.
This feature would not be included in a tool targeted at end users.

Comparing schemas. Our tool offers a second screen (not shown
here) where two schemas may be compared. Rather than com-
puting a boolean answer to the question whether one schema
subsumes the other, as done in state-of-the-art tools today [8],
our tool can generate a witness that exemplifies a JSON document
which is valid w.r.t. the one schema, but not the other.

Target audience. Our demo targets both the EDBT and the
ICDT community. Attendees will become sensitive to the intrica-
cies of working with the JSON Schema language, which caters to
the ICDT community. Moreover, we point out original research
questions that are of interest to the EDBT community, such as ef-
ficiency and scalability issues in dealing with real-world schemas,
either due to the conditional semantics of the JSON Schema lan-
guage, the interplay between negation and recursion (known to
be difficult also in other areas of database research), and the sheer

JSON Schema
is translated to..

… an algebra
expression,

from which we
can generate

witnesses.

Figure 1: Screenshot: from JSON Schema to our algebra.

size of some real-world schemas (especially generated schemas,
which can even take up hundreds of thousands of lines [8]).
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