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ABSTRACT
Recent privacy legislation has aimed to restrict and control the
amount of personal data published by companies and shared with
third parties. Much of this real data is not only sensitive requiring
anonymization but also contains characteristic details from a vari-
ety of individuals. This diversity is desirable in many applications
ranging from Web search to drug and product development. Un-
fortunately, data anonymization techniques have largely ignored
diversity in its published result. This inadvertently propagates un-
derlying bias in subsequent data analysis. We study the problem
of finding a diverse anonymized data instance where diversity is
measured via a set of diversity constraints. We formalize diversity
constraints, and present a clustering-based algorithm for finding
a diverse anonymized instance. We show the effectiveness and
efficiency of our techniques against existing baselines. Our work
aligns with recent trends towards responsible data science by
coupling diversity with privacy-preserving data publishing.

1 INTRODUCTION
Organizations often share user information with third parties to
analyze collective user behaviour and for targetedmarketing. Pro-
tecting user privacy is critical to safeguard personal and sensitive
data. The European Union General Data Protection Regulation
(GDPR), and variants such as the California Consumer Protec-
tion Act (CCPA) aim to control how organizations manage user
data. For example, a major tenet in GDPR is data minimization
that states companies should collect and share only a minimal
amount of personal data sufficient for their purpose. Given the
impossibility of knowing how a published data instance will be
used in the future, determining a minimal amount of personal
data to share is a challenge.

Privacy-preserving data publishing (PPDP) safeguards individ-
ual privacy while ensuring the published data remains practically
useful for analysis. Anonymization is the most common form
of PPDP, where quasi-identifiers and/or sensitive values are ob-
fuscated via suppression or generalization [11]. As anonymized
instances are shared with third parties for decision making and
analysis, there is growing interest to ensure that data (and the
algorithms that generate and use the data) are diverse and fair.
Diversity is a rather established notion in data analytics that
refers to the property of a selected set of individuals. Diversity
requires the selected set to have a minimum representation from
each group of individuals [9, 23] while determining the minimum
bound for each group is often domain and user dependent.

To avoid biased decision making, incorporating diversity into
computational models is essential to prevent and minimize dis-
crimination against minority groups. In this paper, we focus on
diversity, and study how diversity requirements can be modeled
and satisfied in PPDP. In PPDP, non-diverse data instances that
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obfuscate characteristic attributes of a minority group give an
inaccurate representation of the population in subsequent data
analysis. Unfortunately, early PPDP work [11, 22, 24], and recent
work on PPDP for graphs [12, 13], and interactive settings [14, 15]
have not considered diversity in published instances.

Example 1.1. Table 1 shows relation 𝑅 containing patients’
medical records describing gender (GEN), ethnicity (ETH), age
(AGE), province (PRV), city (CTY), and diagnosed disease (DIAG).
Third-parties such as pharmaceuticals, insurance firms are in-
terested in an anonymized 𝑅 containing patients from diverse
geographies, gender, and ethnicities. Let GEN, ETH, AGE, PRV,
CTY be quasi-identifier (QI) attributes, and let DIAG be a sen-
sitive attribute. Existing PPDP methods such as 𝑘-anonymity
prevent re-identification of an individual along the QI attributes
from 𝑘 − 1 other tuples. Table 2 shows a 𝑘-anonymized instance
for 𝑘 = 3 where tuples are clustered along the QI attributes via
value suppression [22, 24].

The 𝑘-anonymization problem is to generate a 𝑘-anonymous
relation through an anonymization process, such as generaliza-
tion and suppression, while incurring minimum information loss.
Suppression replaces some QI attribute values with★s to achieve
𝑘-anonymity, and is often considered to be a maximal form of
generalization that obscures a value completely. There are several
measures of information loss [7, 11], e.g., counting the number
of ★s. Existing 𝑘-anonymization techniques do not preserve di-
versity in 𝑅 since these measures do not capture diversity. □

Unfortunately, existing methods fail to provide any diversity
guarantees in published, privatized data instances, leading to in-
accurate and biased decision making. For example, in Table 2, we
have lost the African and Caucasian ethnicity from the (second)
group ofMale, and the Female gender from the (first) group of
Caucasian. These records, which exclude characteristic features
of minority groups, misrepresent the true patient population.
Efforts to obtain a diverse instance of patients, for example, to
obtain minimum proportions of patients along GEN and ETH
attributes, are hindered due to these missing values.

To model diversity, existing work has proposed declarative
methods in the form of diversity constraints, which define the
expected frequencies that characteristic values (of a group) must
satisfy [23]. Similar to previous work, we consider one or more
discrete value attributes to be of particular concern, and we de-
fine diversity with respect to the values of these attributes. Using
𝑘-anonymity as our privacy definition, and given a relation 𝑅,
constant 𝑘 , and a set of diversity constraints Σ, we study the
problem of publishing a 𝑘-anonymized and diverse instance 𝑅∗.
An example of a diversity constraint 𝜎1 = (𝐸𝑇𝐻 [Asian], 2, 5)
requires an anonymized instance to contain between two and
five Asian individuals, which is satisfied by Table 1 and Table 2.
Diversity constraints provide a declarative definition of the min-
imum and maximum frequency bounds that specific attribute
domain values should appear in 𝑅∗ [23].
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ID GEN ETH AGE PRV CTY DIAG
𝑡1 Female Caucasian 80 AB Calgary Hypertension
𝑡2 Female Caucasian 32 AB Calgary Tuberculosis
𝑡3 Male Caucasian 59 AB Calgary Osteoarthritis
𝑡4 Male Caucasian 46 MB Winnipeg Migraine
𝑡5 Male African 32 MB Winnipeg Hypertension
𝑡6 Male African 43 BC Vancouver Seizure
𝑡7 Male Caucasian 35 BC Vancouver Hypertension
𝑡8 Female Asian 58 BC Vancouver Seizure
𝑡9 Female Asian 63 MB Winnipeg Influenza
𝑡10 Female Asian 71 BC Vancouver Migraine

Table 1: Medical records relation (𝑅)

ID GEN ETH AGE PRV CTY DIAG
𝑟1 ★ Caucasian ★ AB Calgary Hypertension
𝑟2 ★ Caucasian ★ AB Calgary Tuberculosis
𝑟3 ★ Caucasian ★ AB Calgary Osteoarthritis
𝑟4 Male ★ ★ ★ ★ Migraine
𝑟5 Male ★ ★ ★ ★ Hypertension
𝑟6 Male ★ ★ ★ ★ Seizure
𝑟7 Male ★ ★ ★ ★ Hypertension
𝑟8 Female Asian ★ ★ ★ Seizure
𝑟9 Female Asian ★ ★ ★ Influenza
𝑟10 Female Asian ★ ★ ★ Migraine

Table 2: Anonymized relation with 𝑘 = 3

ID GEN ETH AGE PRV CTY DIAG
𝑔1 Female Caucasian ★ AB Calgary Hypertension
𝑔2 Female Caucasian ★ AB Calgary Tuberculosis
𝑔3 Male Caucasian ★ ★ ★ Osteoarthritis
𝑔4 Male Caucasian ★ ★ ★ Migraine
𝑔5 Male African ★ ★ ★ Hypertension
𝑔6 Male African ★ ★ ★ Seizure
𝑔7 ★ ★ ★ BC Vancouver Hypertension
𝑔8 ★ ★ ★ BC Vancouver Seizure
𝑔9 Female Asian ★ ★ ★ Influenza
𝑔10 Female Asian ★ ★ ★ Migraine

Table 3: Anonymized relation with 𝑘 = 2.

We define the (𝑘, Σ)-anonymization problem, which seeks
an optimal 𝑘-anonymous instance 𝑅∗ that satisfies a set of di-
versity constraints Σ. We propose the DIVA algorithm to com-
pute a DIVerse and Anonymized 𝑅∗. DIVA integrates anonymiza-
tion with diversity by applying value suppression to find a 𝑘-
anonymous instance satisfying a set of diversity constraints.
Contributions.We make the following contributions:
(1) We formalize diversity constraitns in PPDP, and we define

the (𝑘, Σ)-anonymization problem that seeks a 𝑘-anonymous
relation with value generalization that satisfies Σ.

(2) We introduce DIVA, a clustering-based algorithm that solves
the (𝑘, Σ)-anonymization problem with minimal suppression.

(3) We evaluate the effectiveness and efficiency of our selection
strategies over the basic version of DIVA. We show that DIVA
achieves improved performance over existing baselines.

2 PRELIMINARIES
Basic Notations. A relation 𝑅 with a schema R = {𝐴1, ..., 𝐴𝑛}
is a finite set of 𝑛-ary tuples {𝑡1, ..., 𝑡𝑁 }. 𝐴, 𝐵,𝐶 refer to single
attributes and 𝑋,𝑌, 𝑍 as sets of attributes.
Privacy-Preserving Data Publishing. 𝑘-anonymity prevents
re-identification of an individual in an anonymized data set [22,
24]. Attributes in a relation are either identifiers such as SSN that
uniquely identify an individual, quasi-identifier (QI) attributes
such as ethnicity, address, age that together can identify an indi-
vidual, or sensitive attributes that contain personal information.

Definition 2.1 (QI-group and 𝑘-anonymity). A relation 𝑅 is 𝑘-
anonymous if every tuple in 𝑅 is in a QI-group with at least 𝑘
tuples. A QI-group is a set of tuples with the same values in the
QI attributes. □

For example, {𝑟1, 𝑟2, 𝑟3}, {𝑟2, 𝑟3}, {𝑟4, 𝑟5}, and {𝑟10} are QI-
groups in Table 2, and the table is 3-anonymous since every tuple
in the table is in one of the QI-groups {𝑟1, 𝑟2, 𝑟3}, {𝑟4, 𝑟5, 𝑟6, 𝑟7},
and {𝑟8, 𝑟9, 𝑟10} with at least 3 tuples. Extensions of 𝑘-anonymity
include 𝑙-diversity, 𝑡-closeness, and (𝑋,𝑌 )-anonymity, which pro-
vide improved privacy confidence (cf. [11] for a survey). We apply
𝑘-anonymity for its ease of presentation, however, our definitions
and techniques are extensible to include recent PPDP models.
Suppression. Suppression generates an anonymized relation 𝑅′

from a relation 𝑅 by replacing some QI values in 𝑅 with ★. We
denote this by 𝑅 ⊑ 𝑅′. Suppression clearly causes information
loss which is typically measured by the number of ★s in 𝑅′.

Definition 2.2 (𝑘-anonymization problem [24]). Given 𝑅, the
𝑘-anonymization problem is to find 𝑅∗ such that (1) 𝑅 ⊑ 𝑅∗; (2)
𝑅∗ is 𝑘-anonymous; and (3) 𝑅∗ has minimum information loss. □

Diversity Constraints. Diversity constraints are originally pro-
posed for the set selection problem defined as follows [23]. Given
a set of 𝑁 items, each associated with a characteristic attribute
and a utility score, the set selection problem is to select𝑀 items

to maximize a utility score subject to diversity constraints. The
utility score is the sum of scores of each selected item. Let there
be 𝑑 distinct values of the characteristic attribute and𝑚𝑖 with
𝑖 ∈ [1, 𝑑] be the number of selected items with each distinct value
such that𝑚𝑖 ∈ [0, 𝑀] and ∑

𝑖 (𝑚𝑖 ) = 𝑀 . A diversity constraint
𝜙 of the form floor𝑖 ≤ 𝑚𝑖 ≤ ceiling𝑖 specifies upper and lower
bounds on𝑚𝑖 , i.e. the number of items with the 𝑖-th character-
istic value. These constraints ensure representation from each
category known as coverage-based diversity. To avoid tokenism,
where there is only a single representative from each category,
we can increase the lower bound, e.g.,𝑚𝑖 > 1.
Problem Definition. We apply the concept of diversity con-
straints as proposed by Stoyanovich et. al [23], and introduce a
formal definition of diversity constraints in relational data.

Definition 2.3 (Diversity Constraints). A diversity constraint
over a relation schema R is of the form 𝜎 = (𝐴[𝑎], 𝜆𝑙 , 𝜆𝑟 ) in
which 𝐴 ∈ R, 𝑎 ∈ dom(𝐴) and 𝜆𝑙 , 𝜆𝑟 are non-negative integers.
The diversity constraint 𝜎 is satisfied by a relation 𝑅 of schema
R denoted 𝑅 |= 𝜎 if and only if there are at least 𝜆𝑙 and at most
𝜆𝑟 occurrences of the value 𝑎 in attribute 𝐴 of relation 𝑅. We
call [𝜆𝑙 , 𝜆𝑟 ] the frequency range and 𝐴[𝑎] the characteristic (or
target) value of 𝜎 . A set of diversity constraints Σ is satisfied by
𝑅, denoted by 𝑅 |= Σ, iff 𝑅 satisfies every 𝜎 ∈ Σ. □

Diversity constraints can be extended to multiple attributes by
replacing 𝐴[𝑎] with 𝑋 [𝑡], where 𝑋 is a set of attributes and 𝑡 is a
tuple with values from these attributes. This extended diversity
constraint 𝜎 = (𝑋 [𝑡], 𝜆𝑙 , 𝜆𝑟 ) is satisfied by 𝑅 if there are at least
𝜆𝑙 and at most 𝜆𝑟 tuples in 𝑅 with the same attribute values in 𝑡 .
To validate that 𝑅 satisfies 𝜎 , we can run a query that counts the
number of occurrences of the target values 𝑡 in attributes 𝑋 of 𝑅
and then check if this number lies in the frequency range [𝜆𝑙 , 𝜆𝑟 ].
Given a set of diversity constraints Σ, we define our problem.

Definition 2.4 (Problem Statement ((𝑘, Σ)-anonymization)). Con-
sider a relation 𝑅, a constant 𝑘 , a set of diversity constraints Σ.
The (𝑘, Σ)-anonymization problem is to find a relation 𝑅∗ where:
(1) 𝑅 ⊑ 𝑅∗, (2) 𝑅∗ is 𝑘-anonymous, (3) 𝑅∗ |= Σ, and (4) 𝑅∗ has
minimal information loss, i.e., a minimum number of ★’s. □

3 THE DIVA ALGORITHM
We present the DIVersity and Anonymization algorithm (DIVA)
that solves the (𝑘, Σ)-anonymization problem. DIVA takes as
input a relation 𝑅, a set of diversity constraints Σ, constant 𝑘 ,
and returns a 𝑘-anonymous and diverse relation 𝑅′ that satisfies
Σ. DIVA work in two phases: (i) clustering, by partitioning 𝑅

into disjoint clusters of size greater than or equal to 𝑘 , while
considering Σ; and (ii) suppression, by suppressing a minimal
number of QI values in each cluster such that they have the
same QI values, and form a QI-group of size ≥ 𝑘 . The result is a
𝑘-anonymous relation, as every QI-group is of size ≥ 𝑘 .
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Figure 1: DIVA overview.
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…
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…
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𝐼𝜎2 ∩ 𝐼𝜎3
= {𝑡6}

𝑣1

𝑣3
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Figure 2: Graph representation of constraints.

3.1 Overview
Figure 1 presents an overview of DIVA. The algorithm begins in
DiverseClustering, which generates a diverse clustering SΣ that
clusters tuples in 𝑅 such that each 𝜎 ∈ Σ is satisfied. We note that
the clustering SΣ may involve a subset of tuples in 𝑅, which are
necessary to satisfy Σ. In Suppress, DIVA anonymizes the tuples
in SΣ using value suppression. The result is a relation 𝑅Σ that
satisfies Σ and is 𝑘-anonymous, however, may not represent all
tuples in 𝑅. In the Anonymize step, DIVA runs an existing off-the-
shelf anonymization algorithm to generate 𝑅𝑘 by anonymizing
the tuples of 𝑅 that do not exist in SΣ and 𝑅Σ. Lastly, the Integrate
phase integrates𝑅Σ and𝑅𝑘 to validate that𝑅Σ∪𝑅𝑘 doesn’t violate
the constraints’ upper bounds.

Algorithm 1 presentsDIVA details.DiverseClustering is a search
algorithm that generates the diverse clustering SΣ. For each
diversity constraint 𝜎 ∈ Σ, it computes a clustering that ensures
the satisfaction of 𝜎 . If no diverse clustering exists, i.e., there is
no diverse 𝑘-anonymous relation 𝑅′, DiverseClustering returns
SΣ := ∅, andDIVA returns an error. Algorithm 2 provides Suppress
details that takes a clustering S and returns a relation 𝑅𝑠 . For
every tuple 𝑡 in a cluster C ∈ S, there is a corresponding tuple
𝑟 ∈ 𝑅𝑠 with the same sensitive values as 𝑡 . For every QI attribute
𝐴𝑖 , 𝑟 [𝐴𝑖 ] is suppressed, i.e. 𝑟 [𝐴𝑖 ] = ★, if the tuples in C have
different values of 𝐴𝑖 (Line 4). Due to this value suppression, 𝑅𝑠
contains QI groups corresponding to the clusters in S. In Line 3,
we call Suppress with input SΣ and output 𝑅Σ.

Returning to Algorithm 1, there may be tuples of 𝑅 that do not
exist in SΣ. The Anonymize routine anonymizes these remaining
tuples by applying an existing𝑘-anonymization algorithm to com-
pute 𝑅𝑘 . In our evaluation, we use the 𝑘-member algorithm [6],
but DIVA is amenable to any 𝑘-anonymization algorithm. Lastly,
Integrate computes 𝑅′ = 𝑅Σ ∪ 𝑅𝑘 and checks whether 𝑅′ |= Σ.
If there exists a violation, 𝑅′ falsifies the upper bound of some
constraint(s) in Σ due to 𝑅𝑘 . Integrate resolves this by suppressing
minimal values in 𝑅′ to satisfy Σ. We return 𝑅′ as the final output.

Example 3.1. Consider an execution of DIVA with relation 𝑅

in Table 1, 𝑘 = 2, and Σ = {𝜎1, 𝜎2, 𝜎3}, where 𝜎1 = (𝐸𝑇𝐻 [Asian],
2, 5), 𝜎2 = (𝐸𝑇𝐻 [African], 1, 3), 𝜎3 = (𝐶𝑇𝑌 [Vancouver], 2, 4).
DiverseClustering returns SΣ = {𝐶1,𝐶2,𝐶3} where𝐶1 = {𝑡9, 𝑡10},
𝐶2 = {𝑡5, 𝑡6}, and 𝐶3 = {𝑡7, 𝑡8}. 𝑅Σ contains suppressed tuples
𝑔5, ..., 𝑔10 in Table 3with QI groups {𝑔5, 𝑔6}, {𝑔7, 𝑔8}, and {𝑔9, 𝑔10}
that correspond to the clusters inSΣ. 𝑅Σ satisfies Σwhere each QI
group satisfies a constraint. The Anonymize procedure generates

Algorithm 1: DIVA (𝑅, Σ, 𝑘)
Output: 𝑘-anonymous and diverse relation.

1 SΣ := DiverseClustering(𝑅, Σ, 𝑘);
2 if SΣ = ∅ then return “relation does not exist” ;
3 𝑅Σ := Suppress(SΣ);
4 foreach C𝑖 ∈ SΣ do 𝑅 := 𝑅 \ C𝑖 ;
5 𝑅𝑘 := Anonymize(𝑅, 𝑘);
6 return Integrate(𝑅Σ, 𝑅𝑘 );

Algorithm 2: Suppress(S)
Input: A clustering S of tuples with schema R.
Output: Relation 𝑅𝑠 (initialized to ∅.

1 foreach C ∈ S and 𝑡 ∈ C do
2 𝑟 := 𝑡 ; 𝑅𝑠 := 𝑅𝑠 ∪ {𝑟 };
3 foreach QI Attribute 𝐴𝑖 ∈ R do
4 if |C[𝐴𝑖 ] | > 1 then 𝑟 [𝐴𝑖 ] := ★;
5 return 𝑅𝑠 ;

𝑅𝑘 = {𝑔1, ..., 𝑔4}, and the Integrate procedure returns𝑅′ = 𝑅𝑘∪𝑅Σ
(Table 3) which is 𝑘 = 2-anonymous and satisfies Σ. □

3.2 Diverse Clustering
We describe how DiverseClustering computes a clustering SΣ

that satisfies Σ. We first define the semantics of how a clustering
satisfies a diversity constraint.

Definition 3.2. Given 𝜎 defined over 𝑅, and a clustering S, S
satisfies 𝜎 , denoted as S ⊩ 𝜎 , if Suppress(S) |= 𝜎 . The clustering
S satisfies a set of constraints Σ, if S ⊩ 𝜎𝑖 for every 𝜎𝑖 ∈ Σ. □

Intuitively, S ⊩ 𝜎 if the relation returned from Suppress(S) in
Algorithm 2 satisfies 𝜎 according to Definition 2.3. In Example 3.1,
SΣ = {{𝑡5, 𝑡6}, {𝑡7, 𝑡8}, {𝑡9, 𝑡10}} ⊩ Σ because Suppress(SΣ) =

{𝑔5, ..., 𝑔10} |= Σ.
DiverseClustering finds SΣ ⊩ Σ by computing clusterings S𝜎𝑖

that satisfy each diversity constraint 𝜎𝑖 ∈ Σ and merging them
to generate SΣ. In Example 3.1, S𝜎1 = {𝐶1} = {𝑡9, 𝑡10} ⊩ 𝜎1,
S𝜎2 = {𝐶2} = {𝑡5, 𝑡6} ⊩ 𝜎2, S𝜎3 = {𝐶3} = {𝑡7, 𝑡8} ⊩ 𝜎3, and
SΣ = S𝜎1 ∪ S𝜎2 ∪ S𝜎3 = {C1, C2, C3} ⊩ Σ. Two conditions must
hold while we search for S𝜎𝑖 . First, the clusters in S𝜎𝑖 must
be disjoint, unless they are equal. Specfically, for every pair of
clusters C ∈ S𝜎𝑖 and C′ ∈ S𝜎 𝑗

, either C′ ∩ C = ∅ or C′ = C. For
overlapping cluster pairs, the result of Suppress will not form QI
groups. If we merge the clusters, then the result may not satisfy
the conditions. For example, if S𝜎2 = {{𝑡5, 𝑡6}}, S𝜎3 = {{𝑡6, 𝑡7}},
and Σ = {𝜎2, 𝜎3}, and we merge them into SΣ = {{𝑡5, 𝑡6, 𝑡7}},
then SΣ ⊮ Σ, although S𝜎2 ⊩ 𝜎2 and S𝜎3 ⊩ 𝜎3. Second, we select
each S𝜎𝑖 such that it does not falsify the upper bounds of other
constraints. In Example 3.1, consider Σ = {𝜎2, 𝜎4} with a new
constraint 𝜎4 = (𝐺𝐸𝑁 [Male], 1, 3), which requires at least one
but not more than 3 men. Then, {{𝑡5, 𝑡6}} ⊩ 𝜎2, and {{𝑡3, 𝑡4}} ⊩
𝜎4, but {{𝑡5, 𝑡6}, {𝑡3, 𝑡4}} ⊮ {𝜎2, 𝜎4} since the upper bound of 𝜎4
is falsified. The clustering S𝜎2 preserves two moreMale values,
and falsifying the upper bound in 𝜎4. This means we cannot
build the S𝜎𝑖 separately, and we must consider the interactions
between the constraints. This is clearly a local condition where
choosing each S𝜎𝑖 , we consider the related constraints that have
overlapping tuples with 𝜎𝑖 , and use this property to convert
diverse clustering to graph coloring.
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Figure 3: Graph coloring for diverse clustering. Nodes are colored in the order 𝑣1, 𝑣3, 𝑣2.

Algorithm 3: DiverseClustering(𝑅, Σ, 𝑘)
Output: Clustering SΣ.

1 𝐺 := BuildGraph(𝑅, Σ); 𝑉 := ∅;SΣ := ∅;
2 if Coloring(𝐺,𝑉 , 𝑅) then
3 foreach ⟨𝑣𝑖 , 𝑐𝑖 ⟩ ∈ 𝑉 do SΣ := SΣ ∪ 𝑐𝑖 .clustering;
4 return SΣ;

Algorithm 4: Coloring(𝐺,𝑉 , 𝑅)
Output: true if there is a coloring of 𝐺 , otherwise false.

1 if 𝑉 contains all nodes of 𝐺 then return true;
2 𝑣 := NextNode(𝐺,𝑉 );
3 foreach S ∈ Clusterings(𝑣 .constraint, 𝑅) do
4 if IsConsistent (S, 𝑣) then
5 𝑐 := new color with clustering S;
6 𝑉 := 𝑉 ∪ {⟨𝑣, 𝑐⟩};
7 if Coloring(𝐺,𝑉 , 𝑅) then return true ;
8 𝑉 := 𝑉 \ {⟨𝑣, 𝑐⟩};
9 return false

3.3 Modeling as Graph Coloring
Given an undirected graph𝐺 = (Γ, 𝐸), where Γ and 𝐸 denote the
set of nodes and edges, respectively, and𝑚 distinct colors, the
graph coloring problem is to color all nodes subject to certain
constraints, e.g., no two adjacent nodes can have the same color.
For relation 𝑅 and diversity constraints Σ, we model each diver-
sity constraint 𝜎𝑖 ∈ Σ as a node 𝑣𝑖 ∈ Γ. We use 𝑣𝑖 .constraint to
refer to 𝜎𝑖 . An undirected edge 𝑒𝑖 𝑗 = {𝑣𝑖 , 𝑣 𝑗 } ∈ 𝐸 exists between
nodes 𝑣𝑖 and 𝑣 𝑗 if 𝜎𝑖 and 𝜎 𝑗 have overlapping target tuples, i.e.,
𝐼𝜎𝑖 ∩ 𝐼𝜎 𝑗

, where the target tuples of a constraint 𝜎𝑖 , denoted by
𝐼𝜎𝑖 , is the set of tuples in 𝑅 that have the target values in 𝜎𝑖 .

Example 3.3. Figure 2 shows𝐺 with three nodes corresponding
to 𝜎1, 𝜎2, 𝜎3, and each of their neighboring constraints modeled
via edges 𝐸 = {{𝑣1, 𝑣3}, {𝑣2, 𝑣3}}. The edge labels show the non-
empty intersections between their target tuple sets. The sets of
target tuples are 𝐼𝜎1 = {𝑡8, 𝑡9, 𝑡10}, 𝐼𝜎2 = {𝑡5, 𝑡6}, and 𝐼𝜎3 = {𝑡6, 𝑡7, 𝑡8,
𝑡10}, which means 𝜎1, 𝜎3 and 𝜎2, 𝜎3 are neighboring constraints,
but there is no edge between 𝑣1 and 𝑣2 because 𝐼𝜎1 ∩ 𝐼𝜎3={𝑡8, 𝑡10}
and 𝐼𝜎2 ∩ 𝐼𝜎3 = {𝑡6}, and 𝐼𝜎1 ∩ 𝐼𝜎2 = ∅. Beside each node, we show
the clusterings that satisfy the corresponding constraint.

Choosing a color for node 𝑣𝑖 is analogous to finding a cluster-
ing S𝜎𝑖 for 𝜎𝑖 . The goal is to color all nodes, while the color of
each node is consistent with the color of its neighboring nodes.
This means the corresponding clusterings must satisfy the two
conditions that we mentioned earlier. For a color 𝑐 , 𝑐.clustering
refers to its corresponding clustering.

Algorithm 3 presents the details of DiverseClustering. We build
the graph𝐺 for Σ and 𝑅 (Line 1). We then initialize the clustering

SΣ and a mapping 𝑉 that stores the color (assigned clustering)
for each node, and check if a coloring exists via Coloring.

Algorithm 4 presents the recursive function, Coloring, that
takes a graph 𝐺 , the mapping 𝑉 (specifying the colored nodes),
relation 𝑅, and returns true if the remaining nodes of 𝐺 can be
colored; otherwise it returns false. Note that choosing a color for
a node, can restrict the choice of colors for neighboring nodes
when the clusterings have overlap. Coloring iterates over every
uncolored node and assigns a color (clustering) that is consistent
with its neighboring nodes (constraints). Specifically, we check
that the two search conditions mentioned earlier are satisfied.
We propose three versions of DIVA: (1) DIVA-Basic: Coloring ran-
domly selects an uncolored node (Line 2) to color using NextNode;
(2) MaxFanOut: selects constraints with a minimal number of
clusterings; and (3) MinChoice: selects constraints with a maxi-
mal overlap with neighboring constraints. We describe the latter
two versions later in this section.

Given a node 𝑣 , we color 𝑣 by checking whether its candidate
clustering, and its adjacent nodes are consistent (Alg. 4, Lines 3-
8). The Clusterings routine returns minimal clusterings S that
satisfy 𝑣 .constraint (Suppress(S) ⊩ 𝑣 .constraint). For example,
Clusterings(𝜎1, 𝑅) contains four clusterings {{𝑡8, 𝑡9}}, {{𝑡8, 𝑡10}},
{{𝑡9, 𝑡10}}, {{𝑡8, 𝑡9, 𝑡10}}, while Clusterings(𝜎2, 𝑅) contains one
clustering {{𝑡5, 𝑡6}}. In Lines 4-8, we check whether S is consis-
tent with the clusterings of the neighboring constraints. If so, we
assign a new color 𝑐 to the clusteringS, and we temporarily color
𝑣 with 𝑐 by adding ⟨𝑣, 𝑐⟩ to𝑉 . We then recursively call Coloring to
check whether the remaining nodes in 𝐺 can be colored. If color
𝑐 does not work, i.e. Coloring returns false, we remove ⟨𝑣, 𝑐⟩ from
𝑉 , and try another color. If all clusterings are inconsistent, i.e.,
there is no successful coloring of 𝑣 , we return false (Line 9), to
backtrack and evaluate a different node. To compute a satisfying
clustering depends not only on 𝑘 , and the frequency of charac-
teristic values in 𝑅 with respect to [𝜆𝑙 , 𝜆𝑟 ] in 𝜎 , but also on the
distribution of these characteristic values. We empirically study
the impact of data distribution on accuracy in Section 4.

Example 3.4. Figure 3 shows an execution of Coloring over
graph 𝐺 with nodes {𝑣1, 𝑣3, 𝑣2}. Figure 3(a) initializes nodes as
uncolored. We first consider 𝑣1, and select 𝑆𝜎1 = {{𝑡9, 𝑡10}} (Fig-
ure 3(b)). We color nodes 𝑣2 and 𝑣3 by recursively calling Coloring.
Coloring one node may restrict the color choice of neighboring
nodes, e.g. after we select {{𝑡9, 𝑡10}} for 𝑣1, we cannot select
{{𝑡6, 𝑡7, 𝑡10}} for 𝑣3 due to the overlapping tuple 𝑡10. For node 𝑣3,
we have several choices including {{𝑡6, 𝑡7}} and {{𝑡7, 𝑡8}}. In Fig-
ure 3(c), we assume the coloring algorithm chooses {{𝑡6, 𝑡7}} for
𝑣3. As a result, {{𝑡5, 𝑡6}}, which was the only choice for 𝑣2, cannot
be used due to the overlapping tuple 𝑡6. This leads the algorithm
towards an unsatisfying clustering (Figure 3(d)). DIVA backtracks
its last decision for 𝑣3 by selecting a different color, {{𝑡7, 𝑡8}} for
𝑣3 in Figure 3(e). In this case, the clustering {{𝑡5, 𝑡6}} for 𝑣2 does
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Table 4: Data characteristics.

Pantheon Census Credit Pop-Syn

|𝑅 | 11,341 299,285 1000 100,000
𝑛 17 40 20 7
|Π𝑄𝐼 (𝑅) | 5,636 12,405 60 24,630
|Σ | 24 21 18 10

not overlap with {{𝑡7, 𝑡8}}. Since we have found a clustering that
satisfies all the constraints (i.e., a coloring of all nodes), Color-
ing returns true with 𝑉 containing the nodes and their colors
(i.e., clusterings). DiverseClustering uses 𝑉 to compute the final
clustering as SΣ = {{𝑡5, 𝑡6}, {𝑡7, 𝑡8}, {𝑡9, 𝑡10}}. □

DIVA runs in polynomial time w.r.t. the size of 𝑅. The run-
time is split between DiverseClustering and Anonymize. Diver-
seClustering runs in polynomial time as the number of clusters
considered in coloring for each constraint is polynomial w.r.t. 𝑅.
Anonymize runs an off-the-shelf algorithm.We use the 𝑘-member
anonymization algorithm, which runs in polynomial time [6].
Selection Strategies. In the basic version of DIVA, we randomly
select a constraint and a clustering to evaluate. These choices im-
pact performance as poor initial selections can lead to increased
backtracking operations downstream. We selectively order the
constraints (nodes) and clusterings (colors) that most likely lead
to a graph coloring while minimizing the need to backtrack.
MinChoice: We select the most restrictive constraints first, i.e., in
Nextnode, we select 𝑣 withminimum |Clusterings(𝑣 .constraint, 𝑅) |.
As we visit nodes and assign (colors) clusterings, we update the
candidate clusterings for their neighbors.
MaxFanOut: We select constraints with maximum overlap with
other constraints, i.e, nodes with the maximum number of un-
colored neighbors. We preferentially select these constraints due
to their high number of interactions, which lead to an increased
number of target attributes, and bounds that the relevant tuples
must satisfy. This heuristic aims to prune unsatisfiable clusterings
early to reduce the number of clustering evaluations downstream.

4 EXPERIMENTS
We evaluate the accuracy and performance of DIVA, and compare
against three 𝑘-anonymization baselines to evaluate the cost of
incorporating diversity constraints.
Experimental Setup. We implement DIVA using Python 3.6
on a server with 32 Core Intel Xeon 2.2 GHz processor with
32GB RAM. We use three real datasets: (1) Pantheon describes
individuals on Wikipedia [1]; (2) Census from the U.S. Census
Bureau describes population data [3]; and (3) German Credit de-
scribes credit risk according to demographic attributes [3]. We
also generate a synthetic population dataset, Pop-Syn to specify
population characteristics using Synner.io [18]. Table 4 summa-
rizes the dataset characteristics. We implement three notions
of diversity via three classes of diversity constraints, namely,
minimum frequency, average, and proportional representation
from the attribute domain [23]. We found proportion constraints
capture the relative distribution in the attribute domain with less
sensitivity than average, and run our experiments using propor-
tion constraints. The set of defined constraints, datasets and our
source code are available at [2, 19].
Metrics and Parameters. We compute the average runtime
over five executions. To quantify accuracy, we seek anonymiza-
tions with indistinguishable tuples, and minimize information
loss. We use the discernibility metric, 𝑑𝑖𝑠𝑐 (𝑅′, 𝑘), which assigns a

Table 5: Parameter values (defaults in bold)
Symbol Description Values
|𝑅 | #tuples 60k, 120k, 180k, 240k, 300k
|Σ | #constraints 4, 8, 12, 16, 20
cf (Σ) conflict rate 0, 0.2, 0.4, 0.6, 0.8, 1
𝑘 minimum cluster size 10, 20, 30, 40, 50
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Figure 4: DIVA efficiency and effectiveness.

penalty to each tuple based on the number of tuples that are indis-
tinguishable from it in 𝑅′ for a given 𝑘 , reflecting its information
loss [4]. We measure the conflict rate between a pair of diversity
constraints as the number of overlapping relevant tuples, and
we extend this definition to a set of diversity constraints. Con-
flict values range from [0,1], where 0 indicates no overlap. The
discernibility metric and conflict rate definitions can be found
in [19]. Table 5 lists parameter ranges and default values.

4.1 Accuracy and Performance
Figure 4a and 4b show DIVA runtime and accuracy, respectively,
as we vary |Σ|. DIVA-Basic shows exponential growth in runtime
since we can assign𝑂 ( |𝑅 |) different clusterings to each constraint.
Our selection strategies to restrict clusterings and perform early
pruning, MinChoice and MaxFanOut, show linear scale-up. Fig-
ure 4b shows as |Σ| increases, we see accuracy decline at a linear
rate. As new 𝜎 ∉ Σ are added, we observe new relevant tuples join
existing clusters of relevant tuples from Σ leading to a smaller
decline in accuracy. This occurs with multi-attribute constraints
that share target attributes with single attribute constraints. The
alignment of QI and target attribute values between new and
existing tuples influence the rate of decline.

Figure 4c shows DIVA accuracy as we vary conflict rate, cf . As
expected, accuracy declines for increasing cf , with MaxFanOut
and MinChoice outperforming DIVA-Basic by +17% and +9%,
respectively. MaxFanOut outperforms MinChoice since targeting
constraints with a high number of interactions eliminates unsatis-
fying clusterings sooner, while satisfying dependent constraints.

To measure accuracy for different data distributions, we gen-
erate attribute values according to the Zipfian, uniform, and
Gaussian distributions with |𝑅 | = 100𝑘 , |Σ| = 8. Figure 4d shows
that MaxFanOut performs best across all distributions by 8% and
17% over MinChoice and DIVA-Basic, respectively. The target
uniform distribution performs best as domain values are spread
evenly across the tuples, avoiding contention among a small set
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Figure 5: Comparative study: anonymization baselines.

of tuples. This conflict occurs more often in the Zipfian case than
the Gaussian, leading to lower accuracy.

4.2 Baseline Comparison
Figure 5a and Figure 5b show the comparative accuracy and run-
time, respectively, ofDIVA against three baseline𝑘-anonymization
algorithms: 𝑘-member [6], OKA [17], and Mondrian [16]. Min-
Choice and MaxFanOut incur higher runtimes reflecting the cost
of computing a diverse data instance. We expect this to be accept-
able in practice since constraint validation and anonymization is
often done offline. As 𝑘 increases, we expect more tuples to be
anonymized leading to higher penalty costs. We note that run-
times decrease for increasing 𝑘 as more values are suppressed to
satisfy 𝑘-anonymity on each cluster. This improves the efficiency
of consistency checking in the coloring algorithm since we can
prune clusterings with size less than 𝑘 during backtracking.

Figures 5c and 5d show that DIVA and the baselines are sensi-
tive to |𝑅 |. Figure 5c shows thatDIVA achieves improved accuracy
over the baseline algorithms, in addition to satisfying diversity
constraints. As new attribute values are introduced, they may
not align with existing values in the clusters, requiring further
suppression, and decreasing accuracy. In Figure 5d, all techniques
incur increased runtimes due to evaluating a larger number of
clusters. For DIVA, a larger number of tuples and clusters also
increases the likelihood of potential conflicts among clusterings.

5 RELATEDWORK
PrivacyPreservingData Publishing. Extensions of𝑘-anonymity
include 𝑙-diversity, 𝑡-closeness, and (X,Y)-anonymity with tighter
privacy guarantees [11]. DIVA is extensible to re-define the clus-
tering criteria according to these privacy semantics. Our empiri-
cal study has shown that DIVA generates anonymized instances
comparable to existing baselines, but also guarantees diversity
requirements are satisfied.
Fairness and Diversity. Data sharing of private data has been
studied along two primary lines. First, causality reasoning aims to
recognize discrimination to achieve algorithmic transparency and
fairness. Recent techniques have proposed influence measures to
identify correlated attributes [8], and statistical reasoning about
discrimination [20]. Secondly, recent work have studied variants

of DP to release synthetic data with similar statistical properties
to the input data [5], and studying the impact of DP algorithms on
equitable resource allocation [21]. Our work is complementary
but with a different goal; to publish diverse and anonymized
versions of the original data with minimal information loss for
applications where statistical summaries, synthetic data, and
aggregate queries are inadequate. Recent work by Stoyanovich
et. al., study diversity in the set selection problem and introduce
diversity constraints to guarantee representation in the selected
set [23, 25]. We build upon this work, and are the first to formalize
diversity constraints. Our algorithms couple diversity with data
anonymization, a problem not considered in existing work.

6 CONCLUSION AND FUTURE WORK
We formalize diversity constraints, and introduceDIVA, a DIVersity-
driven Anonymization algorithm that computes a privatized data
instance satisfying a set of diversity constraints. Our evalua-
tion show the performance benefits of our optimizations, and
the overhead of enforcing diversity constraints over baselines.
As future work, we intend to study privacy extensions beyond
𝑘-anonymity, e.g. randomization algorithms to satisfy both diver-
sity constraints and Differential privacy (DP) to provide a higher
level of protection for individuals [10]. We also intend to ex-
plore a distributed version of the coloring algorithm to improve
scalability by satisfying constraints in parallel.

REFERENCES
[1] 2014. Pantheon Dataset. https://pantheon.world/
[2] 2020. DIVA: Extended Evaluation. https://diva1234567.github.io/DIVA/
[3] 2020. UCI ML Repository. https://archive.ics.uci.edu/ml/datasets/
[4] R. Bayardo and R. Agrawal. 2005. Data Privacy through Optimal K-

Anonymization. In ICDE. 217–228.
[5] V. Bindschaedler, R. Shokri, and C. Gunter. 2017. Plausible Deniability for

Privacy-Preserving Data Synthesis. PVLDB 10, 5 (2017), 481–492.
[6] J. Byun, A. Kamra, E. Bertino, and N. Li. 2007. Efficient k-anonymization using

clustering techniques. In DASFAA. 188–200.
[7] F. Chiang and D. Gairola. 2018. InfoClean: Protecting Sensitive Information in

Data Cleaning. Journal of Data and Information Quality 9, 4 (2018), 22:1–22:26.
[8] A. Datta, S. Sen, and Y. Zick. 2016. Algorithmic Transparency via Quanti-

tative Input Influence: Theory and Experiments with Learning Systems. In
Symposium on Security and Privacy. 598–617.

[9] M. Drosou, H. Jagadish, E. Pitoura, and J. Stoyanovich. 2017. Diversity in Big
Data: A Review. Big Data 5, 2 (2017), 73–84.

[10] C. Dwork. 2006. Differential Privacy. In International Colloquium on Automata,
Languages and Programming. 1–12.

[11] B. Fung, K.Wang, R. Chen, and P. Yu. 2010. Privacy-PreservingData Publishing:
Survey of Recent Developments. ACM Comput. Surv. 42, 4 (2010).

[12] B. Grau and E. Kostylev. 2016. Logical Foundations of Privacy-preserving
Publishing of Linked Data. In AAAI. 943–949.

[13] M. Hay, G. Miklau, D. Jensen, D. Towsley, and C. Li. 2010. Resisting structural
reidentification in anonymized social networks. VLDB J. 19, 6 (2010), 797–823.

[14] Y. Huang, M. Milani, and F. Chiang. 2018. PACAS: Privacy-Aware, Data
Cleaning-as-a-Service. In International Conference on Big Data. 1023–1030.

[15] Y. Huang, M. Milani, and F. Chiang. 2020. Privacy-aware data cleaning-as-a-
service. Information Systems 94 (2020), 101608.

[16] K. LeFevre, D. DeWitt, and R. Ramakrishnan. 2006. Mondrianmultidimensional
k-anonymity. In ICDE. IEEE, 25–25.

[17] J. Lin and M. Wei. 2008. An efficient clustering method for k-anonymization.
In PAIS. 46–50.

[18] M. Mannino and A. Abouzied. 2019. Is This Real? Generating Synthetic Data
That Looks Real. In UIST. 549–561.

[19] M. Milani, Y. Huang, and F. Chiang. 2020. Diversifying Anonymized Data
with Diversity Constraints. arXiv preprint arXiv:2007.09141 (2020).

[20] R. Nabi and I. Shpitser. 2018. Fair Inference on Outcomes. In AAAI. 1931–1940.
[21] D. Pujol, R. McKenna, S. Kuppam, M. Hay, A. Machanavajjhala, and G. Miklau.

2020. Fair Decision Making Using Privacy-Protected Data. In FAccT. 189–199.
[22] P. Samarati. 2001. Protecting respondents identities in microdata release.

TKDE 13, 6 (2001), 1010–1027.
[23] J. Stoyanovich, K. Yang, and H. Jagadish. 2018. Online set selection with

fairness and diversity constraints. In EDBT. 241–252.
[24] L. Sweeney. 2002. k-anonymity: A model for protecting privacy. Int. J. Uncer-

tain. Fuzziness Knowl.-Based Syst. 10, 05 (2002), 557–570.
[25] K. Yang and J. Stoyanovich. 2017. Measuring Fairness in Ranked Outputs. In

SSDBM. 22:1–22:6.

516


	Preserving Diversity in Anonymized DataMostafa Milani, Yu Huang, Fei Chiang

