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ABSTRACT
The state of the art approaches for performing Entity Matching
(EM) rely on machine & deep learning models for inferring pairs
of matching / non-matching entities. Although the experimental
evaluations demonstrate that these approaches are effective, their
adoption in real scenarios is limited by the fact that they are
difficult to interpret. Explainable AI systems have been recently
proposed for complementing deep learning approaches. Their
application to the scenario offered by EM is still new and requires
to address the specificity of this task, characterized by particular
dataset schemas, describing a pair of entities, and imbalanced
classes.

This paper introduces Landmark Explanation, a generic and
extensible framework that extends the capabilities of a post-hoc
perturbation-based explainer over the EM scenario. Landmark
Explanation generates perturbations that take advantage of the
particular schemas of the EM datasets, thus generating explana-
tions more accurate and more interesting for the users than the
ones generated by competing approaches.

1 INTRODUCTION
Despite the effort put in the past 30 years, Entity Matching (EM),
the task that identifies data items that refer to the same real-
world entity, is still an open challenge. State of the art approaches
(e.g., DeepER [7], DeepMatcher [12], DITTO [10], and many oth-
ers [2, 19]), based on Machine Learning (ML) and Deep Learning
(DL) models, have been demonstrated to be effective in the ex-
perimental datasets. Nevertheless, their adoption in real business
scenarios is hampered by several factors, including the need for
large amounts of training data, the need for expert users for
the configuration of their hyper-parameters and the inability to
easily interpret how the models make their decisions.

Explaining the behavior of ML and DL models is now a chal-
lenging research topic [5]. Its application to EM could facilitate
the adoption of EM techniques in business scenarios. An im-
proved ability to interpret the models would increase 1) user con-
fidence in the adoption of ML and DL techniques, 2) the ability
to debug erroneous behaviors and diagnose unexpected results,
and 3) improve the functionality of the approaches. Moreover,
it would decrease the need for domain experts to evaluate the
effectiveness of EM approaches, task that is typically executed
through manual, expensive, and time-consuming processes.

Although several explanation systems have already been pro-
posed in the literature (e.g., LIME [14], Shapley [8], Anchor [15],
and Skater1) , their application to EM tasks is not straightforward
and only few approaches have partially addressed it [4, 6, 11, 17].

1https://github.com/oracle/Skater
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Figure 1: Example of EM record to explain.

The main motivation is that EM is conceived by ML and DL sys-
tems as a binary classification problem, where the class shows if
the pairs of entities described in the dataset records are matching,
and the dataset entry is composed of pairs of attributes describing
the same feature of different entities. This structure is "unusual"
in ML and DL, where the records conversely describe single evi-
dence. Moreover, the datasets are usually imbalanced: the number
of records belonging to the matching class is far less than the
non matching ones. Finally, the attributes describing the same
features of different entities have close statistical distributions
(or close word distributions in case of categorical attributes) even
when they refer to different entities.

In this paper, we present Landmark Explanation a system for
explaining EM model predictions, that extends the capabilities of
a post-hoc perturbation-based local explainer over this specific
scenario. Post-hoc perturbation-based explainers analyze the
records to explain and build a surrogate linear model where
the features are the tokens (e.g., the words in case of textual
attributes) composing the attribute values. The explanation is
directly generated from the surrogatemodel: its linear coefficients
represent the importance of the tokens. This model is trained
with synthetic data, generated via a two-step approach where
the values of the records to explain are properly altered (in the
perturbation phase) and then passed to the original model to get
their class (in the reconstruction phase).

Example 1.1. Figure 1 shows an example of a record describing
a pair of entities. A suffix is added to the attribute names to show
which entity they are describing. The application of a DL based
model to the record (e.g. DeepMatcher) let us know that the enti-
ties in the record do not refer to the same real-world entity. This
is evident for a human person, being clear from the attributes
that the left entity is a digital camera and the right entity is a
leather case. But the EM model is not able to explain the reasons
for its choice. This is the task for an explainer which takes the
record to explain, transforms it into tokens (we create a token for
each space-separated term), generates a number of perturbations
(typically performed by casually dropping tokens), passes each
perturbation to the model to get the class, and exploits the so
generated dataset to train a linear model. The coefficients asso-
ciated to the linear model are the ones explaining the behavior
of the EM model on the target record. The tokens sony, lens,
dsira200w can be considered by an explainer as an evidence of
the fact that the record is describing a non-matching entity.

The direct application of a perturbation mechanism based on
token removals is not effective for the dataset used in EM. The
reason is that removing random tokens is likely to affect both the
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entities represented by the dataset item. The generated synthetic
records may then contain null perturbations where the same to-
kens referring to the different entities are removed. Moreover,
since the EM datasets are largely imbalanced, perturbations fre-
quently lead to records belonging to the non-matching class. To
solve this issue, Mojito [4] introduces the "COPY" perturbation
mechanism, where attribute values describing one of the entities
in a record are substituted to the corresponding attribute val-
ues of the second entity. The aim is to introduce a perturbation
that increases the match probability between pairs of entities.
The aim is to create records representing matching entities. But
duplicating entire attribute values does not allow the approach
to discriminate among the tokens that, thanks to the copy, will
provide the same contribution in the explanation.

Landmark Explanation addresses these issues by introducing
two main innovations. The first is the generation of two expla-
nations for each dataset entry, each one explaining the model
decision from the perspective of one of the two entities described
in the record. These explanations are generated by selecting one
of the entities constituting a dataset entry in turn as a landmark.
The landmark is preserved from the perturbation, which is sub-
jected to the other entity (the varying entity). The second is
a mechanism for computing explanations for records belong-
ing to non-matching classes. Before the perturbation, we inject
additional tokens extracted from the landmark entity into the
varying entity. The perturbation of the varying entity with in-
jected tokens produces a set of synthetic entities. These will all be
concatenated with the landmark entity to generate the synthetic
EM dataset used to train the surrogate model. The idea is to con-
trast the asymmetric nature of the problem: an explanation of a
matching pair is always composed of "interesting" tokens since
they express the reason why the entities have been considered as
matching. The same does not happen for non-matching entities,
since non-matching entities have many reasons to be different. So
it is difficult to generate an explanation with interesting tokens
for non-matching pairs. Therefore the problem is to generate
the most interesting explanations. These are the ones involving
tokens from one entity that if used to describe the second en-
tity would have brought the EM model to classify the record as
matching. Thanks to the injection described above non-matching
pairs are pushed to be match and the resulting explanation will
be more interesting.

Example 1.2. To explain the inference of an EM model applied
to the record in Figure 1 , Landmark Explanation generates two
explanations. The top 3 tokens generated by the explanation with
the left entity as a landmark are leather, nikon and 5811. These
tokens are the ones that best differentiate entities. This means
that if the left entity were described by these tokens, the record
would probably be classified in the matching class by the EM
model. The top 3 tokens generated by the second explanation
with the right entity as a landmark are dsira200w, lens and 849.99.

We evaluate Landmark Explanation coupled with LIME. The
results of the experiments show that the explanations generated
outperform the ones of the competing approaches in accuracy
and "interest" for the users.

Summarizing, the main contributions of this paper are: (1)
the introduction of Landmark Explanation, a tool that extends
the capability of a generic post-hoc perturbation-based explainer
to generate accurate local explanations of EM models; (2) the
realization of an extensive experimentation of Landmark Expla-
nation coupled with the LIME explainer [14] to demonstrate the

effectiveness and the quality of the approach in comparison with
different competitor systems.

The rest of the paper is organized as follows. Section 2 in-
troduces some related work. Section 3 introduces our approach
that is evaluated in Section 4. Finally, in Section 5 we sketch out
conclusion and future work.

2 RELATEDWORK
Explaining AI. The interpretation of machine learning tech-
niques represents a hot topic and two main approaches for its
resolution can be identified [5]. On the one hand, there are intrin-
sically interpretable models, such as decision trees, rule-based
and linear models, which rely on structures that can be directly
interpreted by humans. On the other hand, there are techniques
that analyze the behavior of black-box machine learning meth-
ods via a second intermediate model built from the first. These
post-hoc interpretation methods are model-agnostic (i.e. they are
applicable to any ML / DL model), however they provide less
faithful explanations than intrinsically interpretable models.

Regardless of the explanation technique adopted, it is fur-
ther possible to distinguish between global and local interpreta-
tions [5]. In the first case, the entire functioning of an ML / DL
model is examined, while in the second its behavior is studied
only locally (i.e. by explaining its logic on individual predictions).

The main exponent of the category of local post-hoc interpre-
tation techniques is LIME [14], which exploits an interpretable
linear surrogate model (e.g. Lasso) to evaluate the behavior of the
original model in the neighborhood of a specific data instance.
It will be used in our experiments, and an extension of it is An-
chor [15], which generates explanations based on if-then rules.
Some examples of global explanation systems are BRL [9] and
Skater2. Similar techniques are permutation feature importance
and drop-column importance [1], which can be used to detect the
global relevance of features in any model.

In this paper we focus exclusively on local post-hoc interpre-
tation techniques (for simplicity in the rest of the paper they
will also be identified as generic "explanation systems") and we
propose their adaptation, through Landmark Explanation, to the
Entity Matching problem.
Explainable Entity Matching. Entity matching, that is the
task that identifies the records that refer to the same real-world
entity in multiple datasets, represents one of the main steps
of data integration and has been under study for several years.
Many techniques have been proposed: from the more traditional
rule-based approaches to the most modern machine learning
and deep learning methods. Some examples of the first category
are [16, 18]. They are intrinsically interpretable, however, the
identification of the most effective set of matching rules is a
complex and non-trivial task [13].

Recently, several approaches based on Deep Learning have
proved particularly effective in solving this task. Some exam-
ples are DeepER [7], DeepMatcher [12], DITTO [10] and many
others [2, 19]. In addition to requiring a significant amount of
annotated data and a complex configuration, the main problem
with these systems is the inability to interpret their behavior,
affecting their usability in business environments [3].

This motivated the realization of several studies on the use of
interpretation techniques in the entity matching area [11, 17], and

2https://github.com/oracle/Skater
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Figure 2: A generic post-hoc perturbation based explanation system (at the top of the image) compared with its extension
with the Landmark Explanation Framework (at the bottom).

tools, like Mojito [4] and Explainer [6], have been proposed. Ex-
plainER provides a unified interface for applying well-known in-
terpretation techniques (e.g., LIME, Shapley, Anchor, and Skater)
in the EM scenario. Mojito adapts LIME for the explanation of
single EM predictions and represents the work closer to our ap-
proach. It extends LIME in two ways: 1) it exploits the subdivision
of EM data into attributes, 2) it introduces a new form of data per-
turbation, called LIME-COPY3, which allows generating match
elements starting from non-match elements. Unlike Landmark
Explanation, Mojito treats attributes atomically, distributing its
impact equally to its constituent tokens. Furthermore, Landmark
Explanation analyzes the diversified impact that the same token
can generate depending on the entity considered as a landmark
for the explanation.

3 THE LANDMARK
EXPLANATION APPROACH

Landmark Explanation is a generic and extensible framework
that can extend a generic local post-hoc and model-agnostic
perturbation based explanation systems to the interpretation of
EM model predictions. The main assumption of these generic
systems is that the prediction of a model computed on a given
instance can be approximated by a linear function of the predic-
tions calculated in the neighborhood of that input instance. Their
functional architecture is shown at the top of Figure 2 and can be
schematized in 3 main blocks: the component for the Perturbation
generation, for the Dataset reconstruction and for the Surrogate
Model Creation.

The Perturbation generation component takes the record to
analyze as input and generates a number of perturbations from
it. These perturbations constitute a new features space, defined
in the neighborhood of the record, which, once integrated by
the Dataset reconstruction component with the predictions of
the original model, can be used by the Surrogate Model creation
component to infer its behavior in the locality of the record.

Landmark Explanation extends the generic explanation sys-
tem to improve its effectiveness on datasets representing EMs.
In particular, as shown at the bottom, of Figure 2, Landmark
Explanation adds the Landmark generation component before the
perturbation. This component generates for the record to explain

3In Section 4 we refer to this technique as Mojito Copy to emphasize that this
technique is part of the Mojito tool.

two representations, where only one of the two entities compos-
ing the item will be subject to the perturbation and the other one
will be kept fixed as a landmark. This constitutes the input for
the Perturbation generation component that will be called twice,
once for each representation. In this way, each perturbation ob-
tained with this process will involve the attributes of one entity.
The tokens of the second entity (the landmark entity) will be
added by the Pair reconstruction component before the Dataset
reconstruction. This allows Landmark Explanation to perturb the
information of one entity at a time while preserving the pair-
wise structure of the EM data. A perturbation of the input entity
pair is generated by varying only one of the two entities while
preserving the pairwise structure of the EM data.

Note that the component performs differently when the record
to explain is referring to a non-matching class. In this case, the to-
kens of both entities are concatenated into the varying entity and
passed to the Perturbation generation component. The behavior
of the Pair reconstruction component does not change, by concate-
nating after the perturbation the contribution of the landmark
entity. This mechanism has been implemented to contrast the
dataset imbalance and to generate explanations that can be more
interesting for the users since based on a richer set of tokens. Fi-
nally, as for the generic explanation system, the synthetic dataset
just created is used to train a linear model whose coefficients
constitutes the explanation. These coefficients can be positive
or negative thus indicating which tokens should be added (the
one with a positive score) and which should be removed (the one
with negative score) to create a description that is closed to the
reference entity.

The yellow-shadowed components in the Figure are the ones
provided by the explanation system we are extending. In our
experiments, these components are provided by the LIME ex-
plainer. Since Landmark Explanation conceives them as black
box modules, other explanations systems can be easily coupled
with our approach.

3.1 Landmark Explanation components
Landmark Explanation is composed of three main components
for the Landmark generation, the Pairs reconstruction and the
Dataset reconstruction.
Landmark generation component. The goal of this component is
to generate input for the Perturbation generation component. A
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Dataset Type Datasets Size % Match

S-BR

Structured

BeerAdvo-RateBeer 450 15.11
S-IA iTunes-Amazon 539 24.49
S-FZ Fodors-Zagats 946 11.63
S-DA DBLP-ACM 12,363 17.96
S-DG DBLP-GoogleScholar 28,707 18.63
S-AG Amazon-Google 11,460 10.18
S-WA Walmart-Amazon 10,242 9.39
T-AB Textual Abt-Buy 9,575 10.74
D-IA

Dirty
iTunes-Amazon 539 24.49

D-DA DBLP-ACM 12,363 17.96
D-DG DBLP-GoogleScholar 28,707 18.63
D-WA Walmart-Amazon 10,242 9.39

Table 1: Magellan Benchmark

Tokenizer is firstly needed to transform the dataset entry in a
format suitable for generating meaningful explanation. We im-
plement a tokenization mechanism similar to the one adopted
in other systems as Mojito [4] that preserves the structure of
the pair of entities described in the record. A token is generated
for each space-separated term in the attribute values. A prefix is
introduced to each token to indicate the attribute where the orig-
inal value is located in the entity schema. The prefix enumerates
the tokens, to manage multiple occurrences of the same word in
an attribute value.

After the tokenization, Landmark Explanation implements
two mechanisms for performing this task. With the single-entity
generation, the tokens composing the entities are separated and
the perturbation component is called twice, each time with the
element of a different entity. The output for each execution are
the tokens of one entity (the landmark) and a number of pertur-
bations for the second entity. This technique generates a pertur-
bation that highlights the differences of one entity with respect
to the other. It is then particularly effective when the record to
explain is belonging to the matching class.

With the double-entity generation, the perturbation component
receives as input the tokens of an artificial entity created by
concatenating, for each attribute, the tokens of both the entities.
The output for each execution are then the tokens of one entity
(the landmark) and a number of perturbations of the artificial
entity created by the concatenation. The idea of this technique
is to generate the perturbation of a more extensive set of tokens
(obtained by the union of the tokens of both the entities) that
is effective for generating explanations for records classified as
non-matching items.
Pair reconstruction component. The component receives as input
the landmark entity and a number of perturbations of the tokens
of the varying entity and "reconstructs" the corresponding pairs
of entities (one for each perturbation). The prefixes introduced
by the Tokenizer are exploited for this purpose and removed from
the generated records.
Dataset reconstruction component. This component generates the
synthetic dataset to be used for training the surrogate linear
model. This is obtained by passing each pair of entities recon-
structed by the previous component to the original EM model
for getting the predicted class.

4 EXPERIMENTAL EVALUATION
We evaluated the explanations generated by Landmark Expla-
nation according to two main perspectives: their reliability in
representing the EM Model (in Section 4.2) and the "quality" of
the explanation provided (in Section 4.3).

(a) Matching label.

Single Double LIME
Accuracy MAE Accuracy MAE Accuracy MAE

S-BR 0.923 0.121 0.796 0.136 0.830 0.147
S-IA 0.940 0.226 0.793 0.251 0.847 0.240
S-FZ 0.934 0.228 0.841 0.237 0.865 0.236
S-DA 0.887 0.171 0.894 0.164 0.573 0.337
S-DG 0.836 0.196 0.823 0.196 0.757 0.200
S-AG 0.896 0.074 0.903 0.112 0.698 0.148
S-WA 0.954 0.071 0.928 0.115 0.659 0.228
T-AB 0.908 0.066 0.854 0.146 0.758 0.118
D-IA 0.899 0.090 0.975 0.112 0.780 0.156
D-DA 0.942 0.030 0.979 0.041 0.940 0.025
D-D 0.929 0.107 0.963 0.152 0.891 0.115
D-WA 0.916 0.045 0.901 0.090 0.813 0.074

(b) Non-matching label.

Single Double LIME Mojito Copy
Accuracy MAE Accuracy MAE Accuracy MAE Accuracy MAE

S-BR 0.747 0.092 0.927 0.037 0.843 0.100 0.011 0.369
S-IA 0.669 0.248 0.736 0.127 0.624 0.267 0.022 0.569
S-FZ 0.811 0.188 0.853 0.134 0.953 0.189 0.032 0.681
S-DA 0.975 0.021 0.590 0.287 0.985 0.066 0.005 0.574
S-DG 0.895 0.086 0.660 0.306 0.935 0.107 0.005 0.504
S-AG 0.835 0.107 0.895 0.056 0.905 0.097 0.010 0.445
S-WA 0.990 0.028 0.955 0.217 0.890 0.352 0.000 0.746
T-AB 0.860 0.076 0.680 0.047 0.795 0.092 0.045 0.328
D-IA 0.874 0.019 0.291 0.070 0.390 0.129 0.242 0.191
D-DA 0.615 0.071 0.300 0.027 0.690 0.036 0.010 0.173
D-DG 0.540 0.305 0.375 0.118 0.640 0.235 0.040 0.437
D-WA 0.500 0.184 0.785 0.078 0.500 0.192 0.005 0.380

Table 2: Token-based evaluation.

4.1 Experimental setup
We run the experiments on a VM deployed on Google Cloud with
12 GB of RAM, GPU K80, and Intel(R) Xeon(R) CPU @ 2.30GHz.
Dataset and Model. The EM model explained in the experiments
is a Logistic Regression Classifier. We experimented Landmark
Explanation against the datasets provided by the Magellan li-
brary4 which is considered as a standard benchmark for the
evaluation of EM tasks. The datasets are listed in Table1, where
the size and the percentage of records representing matching
entities are shown. The records in all datasets represent pairs of
entities described with the same attributes. A label is provided to
express if the record represents a matching / non-matching pair
of entities. In the experiments, we sampled 100 records per label
and we computed their explanations. Note that all records are
sampled when the dataset contains less than 100 records (see for
example the dataset S-BR which contains only 68 records labeled
as matching entity).

4.2 Reliability of the explanations
The goal of the experiment is to evaluate the reliability of the
explanations generated by Landmark Explanation in interpreting
the behavior of an EM model through single predictions. An
explanation is considered reliable if it is able to consistently
recognize the importance of the features with the EM model.
To evaluate this, we performed two kinds of experiments, one
analyzing the weights assigned by Landmark Explanation to the
tokens it generates, the second the weights assigned by the EM
model to the dataset attributes.

4.2.1 Token-based evaluation. Through this first kind of ex-
periment, we evaluate if the weights assigned by Landmark Ex-
planation to the tokens generate a surrogate model consistent
with the EM model. We performed an experiment that is similar
4https://github.com/anhaidgroup/deepmatcher/blob/master/Datasets.md
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to the one proposed in the evaluation of LIME: 25% of tokens
are randomly selected and removed from the record to explain,
defining a new item. We then compared the probability score
obtained passing the new item to the EM model with the one of
the original record, where we have subtracted the sum of the co-
efficients associated with the removed tokens. If the explanation
model correctly represents the EMmodel these two values should
be close. We repeated the experiment 100 times for each class (see
the beginning of Section 4), and we measured the performance
obtained by means of two metrics: the mean average error (MAE)
and the accuracy on the predicted class. We performed the exper-
iments for all datasets and testing all techniques for generating
the perturbations as reported in Table 2. Note that column LIME
shows the results obtained with LIME / Mojito Drop5 with the
same setting. Non-matching settings also include a comparison
with the Mojito Copy technique, which has been designed for
this kind of record.
Discussion. Table 2a shows that Landmark Explanation, applied
to records labeled as matching entity, performs better than LIME
in the datasets when the perturbation is generated with the single-
entity technique (it obtains better accuracy in all datasets and low
MAE in 11/12 datasets). The double-entity generation technique
performs slightly worse: in 9/12 it obtains better accuracy and in
6/12 lower MAE). Nevertheless, the scores, when worst, are very
close to LIME. Note that in some datasets there is some small
contradiction between accuracy and MAE scores computed for
the same dataset. For example, we observe that Landmark Expla-
nation applied to the S-BR dataset with the double-generation
configuration has a better MAE score than LIME/Mojito Drop.
This is not the same for the accuracy value, where LIME per-
forms better. This is motivated by the fact that the probability
scores generated by the model are close to the decision threshold
(fixed to 0.5). Then, small fluctuations in the surrogate model
can generate mismatches in the class predicted by the explained
model for the records, even if the EM model and the surrogate
model are very close. Table 2b shows the accuracy and the MAE
obtained analyzing records referring to non-matching labels. In
this scenario, the double entity perturbation obtains the best
scores with an accuracy better than LIME/Mojito Drop in 4/12
datasets and a lower MAE in 10/12 datasets. The reason is due to
the effect of the duplicated tokens inserted in the dataset used for
training the surrogate model. These tokens, being similar to the
ones of the entities described in the record, push the EM model
to classify the record towards a matching label even in the case
of an imbalanced dataset. By using the same tokens, the entities
will likely be considered by the model as similar. Conversely, the
perturbations generated by LIME / Mojito drop are subsets of the
original record, which, in this case, was classified as non-match.
By removing tokens from descriptions of entities classified as
non-matching, the probability score of the EM model usually de-
creases and it is unlikely to obtain descriptions of entities that a
classifier evaluates as matching. If we pushed the decision thresh-
old to 0.4 (instead of 0.5), Landmark Explanation would obtain a
better performance than LIME/Mojito drop in 10/12 datasets.

Note that the copying technique introduced by Mojito to man-
age records associated with non-matching labels does not show
high performance. The reason is that Mojito generates a pertur-
bation by duplicating entire attributes.

The result of this operation is that the tokens of the replaced at-
tribute have the same weights, thus decreasing the performance.

5the Mojito Drop technique implements the LIME approach

(a) Matching label.

Single Double LIME

S-BR 1.000 1.000 1.000
S-IA 0.261 0.538 0.495
S-FZ 0.592 0.592 0.143
S-DA 0.520 0.520 0.200
S-DG 1.000 1.000 1.000
S-AG 1.000 0.545 0.545
S-WA 0.901 1.000 0.544
T-AB 0.545 0.545 0.545
D-IA 0.892 0.939 0.848
D-DA 1.000 1.000 1.000
D-DG 1.000 1.000 1.000
D-WA 0.526 0.681 0.526

(b) Non-matching label.

Single Double LIME Mojito
Copy

S-BR 0.733 1.000 1.000 1.000
S-IA 0.312 0.538 0.687 0.756
S-FZ 0.333 0.518 0.864 0.414
S-DA 0.200 1.000 0.200 0.520
S-DG 1.000 0.520 1.000 0.333
S-AG 1.000 0.545 0.545 0.545
S-WA 0.573 1.000 0.872 1.000
T-AB 0.545 0.545 0.545 1.000
D-IA 0.925 0.899 0.776 0.939
D-DA 0.813 1.000 1.000 1.000
D-DG 1.000 1.000 1.000 0.813
D-WA 0.681 0.681 0.681 0.681

Table 3: Attribute-based evaluation (weighted Kendall
measure applied on the ranked list of attributed as gen-
erated by the EM and the surrogate model).

Lesson learned. The surrogate model built by Landmark Expla-
nation with the single-entity perturbation is an accurate repre-
sentation of the EM model for records representing matching
pairs of entities. The model built with the double-entity pertur-
bation is an accurate representation of the EM model for record
representing non-matching pairs of entities.

4.2.2 Attribute-based evaluation. The attribute-based evalua-
tion proceeds in the opposite direction: it starts from the internal
structure of the EM model and evaluates if the weights it gives
to the attributes are close to the ones we can derive from the
tokens obtained by Landmark Explanation. For this reason, we
have analyzed the weights given to the dataset attributes by the
Logistic Regression model used as EM model in the experiments
and ranked the attributes according to their absolute values. We
have done a similar operation with the surrogate model, where
the weights of the attributes have been computed by summing
the absolute weights of their composing tokens. The idea is that
the order of the attributes computed on the basis of their weights
should be the same in both models. In Table 3, we measured
the correlation computed by applying the weighted Kendall tau
correlation measure, between the ranked list of attributes of the
EM and surrogate model.
Discussion. Table 3a shows the experiments on the records rep-
resenting matching entity pairs. The correlation scores achieved
by Landmark Explanation with the double-entity perturbation
approach are better or equal to the ones achieved by LIME/Mojito
for all dataset. Table 3b shows the experiments on the records rep-
resenting non-matching entity pairs. In this case, the single-entity
configuration obtained better/equal results than LIME/Mojito
Drop in 7/12 datasets (4/12 against Mojito Copy); the double-
entity configuration obtained better/equal results than LIME/Mojito
drop in 9/12 datasets (the same against Mojito Copy). Note that
Mojito Copy, that has been explicitly designed for non-matching
entities, performs better than LIME/Mojito Drop in 5/12 datasets
only and equal/close to LIME/Mojito Drop in 4/12 datasets and
worst in the remaining 3 datasets.
Lesson learned. Landmark Explanation creates surrogate models
that maintain a relative importance of the attributes similar to
the ones of the EM model to explain.

4.3 Quality of the explanations
To introduce this experiment, let us consider an application that
aims to provide the explanation for a record labeled as a non-
matching entity. The tokens of non-matching are "less polarized":
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(a) Matching label.

Single Double LIME

S-BR 0.643 0.593 0.686
S-IA 0.652 0.404 0.702
S-FZ 0.606 0.447 0.612
S-DA 1.000 0.940 0.965
S-DG 0.660 0.610 0.925
S-AG 0.955 0.800 0.990
S-WA 1.000 0.785 0.870
T-AB 0.985 0.575 0.995
D-IA 0.561 0.278 0.311
D-DA 0.695 0.715 0.800
D-DG 0.635 0.530 0.735
D-WA 0.915 0.545 0.880

(b) Non-matching label.

Single Double LIME Mojito
Copy

S-BR 0.298 0.927 0.331 0.011
S-IA 0.545 0.736 0.393 0.000
S-FZ 0.079 0.853 0.047 0.000
S-DA 0.000 0.030 0.000 0.005
S-DG 0.020 0.545 0.020 0.000
S-AG 0.075 0.895 0.070 0.010
S-WA 0.015 0.955 0.000 0.000
T-AB 0.305 0.680 0.340 0.045
D-IA 0.670 0.291 0.379 0.027
D-DA 0.205 0.300 0.125 0.000
D-DG 0.200 0.375 0.160 0.030
D-WA 0.190 0.785 0.130 0.005

Table 4: Evaluation of the interest associated to the com-
puted explanations.

there are many reasons to be dissimilar for two entities. For this
reason, it is easy for this application to say why two entities
do not match, since there is plenty of tokens that do not match
between the entities in the record. Nevertheless, the explanation
would be more interesting if the tokens returned would be the
ones changing class of the record from non-matching tomatching.
In other words, we claim that an interesting explanation for non-
matching entities should return the tokens that, if shared by the
second entity, would make the record classified as matching.

In this section, we describe the evaluations we performed
to evaluate the aforementioned situation. The experiments are
similar to the first experiments described in Section 4.2, but in this
case we select the tokens to remove. For sake of completeness,
we performed a similar experiment with records classified as
matches even if this evaluation is less meaningful. When the
record is associated with a matching label, we remove all positive
tokens (all tokens that contribute to the decision). The negative
tokens are removed when the label represents a non-matching
record. In Table 4 to evaluate the experiment we measure the
interest, which is the accuracy computed on the records where
the removal of the tokens was able to generate a change in the
label.
Discussion. Table 4a shows that Landmark Explanation is good
but slightly worse than LIME in terms of interest, when the
records are labeled as matching class. This happens even if the
surrogate model is really accurate (the MAE score is the lowest
for all experiments with the single-entity configuration). The
problem is that in most of the cases, even removing all tokens,
the explanation created by Landmark Explanation belongs to
the same class as before the token removal. Note that if we set
a decision threshold to 0.4, our approach has the best results
in all datasets. Table 4b shows that the explanations of non-
matching entities generated by Landmark Explanation in the
setting double-entity outperform the ones of Lime/Mojito Drop
and Mojito Copy.
Lesson learned. Landmark Explanation generates interesting ex-
planations, and the perturbation made with the double-entity
generation technique effectively increases "the interest" of non-
matching record explanations.

5 CONCLUSION
This paper introduces Landmark Explanation a tool that makes
a post-hoc perturbation-based explainer able to deal with ML
and DL models describing EM datasets. The approach has been
experimented coupled with the LIME explainer, which is one of

the most used state of the art approaches. The results show that
the explanations generated by Landmark Explanation outperform
the ones generated by the competing approaches in accuracy.
Moreover, the explanations generated by Landmark Explanation
have been experimented to be "more interesting" for the users.

Future work includes the study of techniques for summarizing
the explanations to facilitate the interpretation of the EM model
as an whole.
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