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ABSTRACT
The paper studies the application of automated machine learn-
ing approaches (AutoML) for addressing the problem of Entity
Matching (EM). This would make the existing, highly effective,
Machine Learning (ML) and Deep Learning based approaches
for EM usable also by non-expert users, who do not have the
expertise to train and tune such complex systems. Our experi-
ments show that the direct application of AutoML systems to
this scenario does not provide high quality results. To address
this issue, we introduce a new component, the EM adapter, to
be pipelined with standard AutoML systems, that preprocesses
the EM datasets to make them usable by automated approaches.
The experimental evaluation shows that our proposal obtains the
same effectiveness as the state-of-the-art EM systems, but it does
not require any skill on ML to tune it.

1 INTRODUCTION
Machine Learning (ML) has significantly advanced over the past
ten years [1]. On one side, the research on Big Data let emerge
new challenges and made available scenarios and datasets where
to experiment and improve ML techniques. On the other side,
the increase of computer processing power, thanks in particular
to the use of graphic processing units, enabled ML approaches
running in commodity hardware. This led to the development of
new ML algorithms and their implementations through frame-
works and libraries is extensive and growing [17]. Thus the ML
technology moved from an R&D phase, for the exclusive use
of specialized laboratories, to a mature phase where it can be
adopted in business applications.

Mature technologies have to be easy to use for both non-
experts and professionals. One of the main bottlenecks towards a
large use of the ML technology is related to the configuration of
the systems, where experts are typically needed to set the large
number of hyper-parameters. Furthermore, the selection of the
algorithm that best performs in a given ML task is based on an
experimental evaluation in which the performances of compet-
ing approaches are compared. This requires a time-consuming
and expensive iterative process in which multiple alternative
solutions are tested until an optimal result is achieved.

To address these issues, automatedmachine learning (AutoML)
tools have been proposed. These are user-friendly and easy-to-
use systems that provide a unified interface for the automatic
selection of the most appropriate MLmodel/algorithm for a given
task and its automatic configuration. Some examples are Auto-
WEKA [12], AutoSklearn [9], AutoGluon [8], Auto-Keras [11],
H20 AutoML [10], and many other.

This paper analyzes the application of AutoML systems to
Entity Matching (EM), i.e. the task of identifying which records
in a dataset refer to the same real-world entity [5]. Applications
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addressing EM tasks are becoming mature technologies and Au-
toML can promote this maturation for three main reasons. First
of all, the state of the art EM systems are based on complex and
advanced neural architectures [2, 7, 13, 16, 25] which require
a non-trivial configuration process performed by expert users.
Therefore, AutoML can make the application of EM techniques
possible also to less experienced users. Secondly, the implemen-
tation of an EM system based on ML is expensive since it is
performed through a time-consuming process that requires the
active involvement of domain experts for evaluating the model.
Introducing a form of automation would reduce the cost and
time for the model deployment. Finally, in business scenarios
where annotating data for the training process is costly and the
performance evaluation is a critical task, the results obtained
with an AutoML system represent a low-cost baseline.

Our experiments showed that the direct application of AutoML
systems to the EM task was not effective. One of the main reasons
is that such systems have been designed to solve generic ML tasks.
Therefore, they are ineffective in dealing with the peculiarities of
EM, characterized by an "unusual" data format, where each record
is a description of pairs of entities, and there is a high imbalance
between the “match" and “non-match" classes to predict.

For this reason, we introduce in this paper a software com-
ponent, the EM adapter, encoding the datasets used in the EM
task into a numerical form that make them to be effectively
processed by AutoML systems. The EM adapters rely on the
most recent transformer architectures, such as BERT and vari-
ants [6, 14, 19, 24], whose out of the box application to the EM
problem has proved to be particularly effective [2]. We show in
our experiments that EM adapters pipelined with AutoML sys-
tems are able to ensure quality performance comparable with the
one of EM approaches parametrized by ML experts, thus making
possible the use of complex ML techniques to non-expert users.

Summarizing, the main contributions of our paper are:

• An analysis about the application of AutoML systems to
the EM task;

• The design of EM adapters, components based on pre-
trained transformer architectures, to be pipelined with
AutoML systems for making them able to effectively per-
form the EM task;

• An extensive experimentation (including a comparison
with other state of the art EM tools) to evaluate the effec-
tiveness of our proposal in different scenarios (reduced
training times and different types of data).

The rest of the paper is organized as follows. Section 2 intro-
duces the state-of-the-art techniques developed in the AutoML
and EM fields. Section 3 describes the main features of the EM
adapters, the components we developed for making AutoML
systems addressing EM tasks, and Section 4 presents the imple-
mentation we developed. Our approach has been experimented
as described in Section 5. Finally, in Section 6 we sketched out
some conclusions and future work.
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2 RELATEDWORK
Entity Matching. Despite the effort put by the research commu-
nity for more than thirty years, EM is still an open challenge.
Several techniques have been proposed: they range from rules-
based approaches [18, 20, 22] to ML models, that conceive EM
as a binary classification problem [4] applied on datasets whose
records describe pairs of entities. Recently, Deep Learning (DL)
approaches (DeepER [7] and DeepMatcher [16] are the first pro-
posals) have proved to be very effective. They suffer from two
main problems: 1) the need for a significant amount of labeled
data for their training and 2) a non-trivial configuration. To ad-
dress the first problem, approaches based on transfer learning
and fine-tuning techniques relying on architectures pre-trained
on large generalist corpus have been proposed [2, 13, 25]. [25]
presents a transfer learning approach to EM leveraging on pre-
trained models from large-scale, production knowledge bases.
[13] applies a fine-tuning process based on a pre-trained Bert
architecture [6] using a limited number of labeled data, whose
performance is further improved through the exploitation of data
augmentation techniques. An analogous approach is described
in [2], in which a larger collection of transformer architectures
(Bert, XLNet [24], DistilBERT [19] and RoBERTa [14]) are applied
to the EM problem.

Although these systems address the problem of the need for
a significant number of labeled data, they require specific skills
in modifying, training, and configuring complex neural architec-
tures. In this work, we aim to make an EM architecture accessible
also to non-expert users and to generate low-cost baselines for
EM tasks.
AutoML AutoML is a recent research topic and consists in the
automatic identification of the most effective algorithms to make
ML inference requiring minimal human intervention and exploit-
ing a limited computational budget (e.g. in terms of use of CPU
and RAM).

The first definition of this problem is given in [12], where Au-
toML is formalized as a Combined Algorithm Selection and Hyper-
parameter optimization (CASH) problem. The solution proposed
in this work is Auto-WEKA: a system designed to automatically
select and configure, using methods based on Bayesian optimiza-
tion, the classification models available within the WEKA1 ML
library. Starting with this pioneering work, numerous AutoML
systems have been developed. Among them, AutoSklearn [9]
combines a meta-learning technique, to boost a Bayesian opti-
mization, with an ensemble method applied to the models se-
lected in the previous step. AutoGluon [8] uses ensembling and
multi-layer stacking techniques to combinemultiplemodels (such
as LightGBM boosted trees, CatBoost boosted trees, Random
Forests, Extremely Randomized Trees, and k-Nearest Neighbors).
In the context of neural networks, the main exponent is Auto-
Keras [11], which applies Bayesian optimization in the search
for the most efficient neural architecture (the so-called Neural
Architecture Search - NAS). Another promising AutoML system
is H2OAutoML [10], which, in place of Bayesian optimization,
uses a combination of fast random search with ensemble staking
techniques. Finally, a comparison of state-of-the-art approaches
is provided in [21].

To the best of our knowledge, no study has been proposed for
the application of AutoML systems to the EM task.

1https://www.cs.waikato.ac.nz/~ml/weka/index.html

3 DESIGNING AUTOML FOR EM TASKS
AutoML systems could largely support the application of ML and
DL approaches to EM tasks by selecting the best classification
models for given datasets and providing the tuning of the pa-
rameters. Nevertheless, our experiments (partially reported in
Section 5) showed that AutoML systems are not effective in this
scenario.

To investigate the reasons for such behavior, we considered
AutoML systems as black-box tools and we analyzed if there are
peculiarities that make EM, conceived as ML task, a hard issue
for these approaches. Firstly, we observed that the datasets used
for representing EM tasks describe pairs of entities. The insight
that an ML model can learn from them is mainly obtained by
comparing the values assumed by pairs of attributes describing
the same feature in different entities. Since an entity is described
through several features, and pairs of attributes describing the
same features have value distributions clearly close, selecting
and tuning an ML model can be a complex task. Secondly, the
classification problem is highly imbalanced, due to the very large
number of unmatching entities with respect to the matching
ones.

In this paper, we address the first issue by developing and
experimenting with a component, the EM adapter, which pro-
vides an encoding of EM datasets that effectively supports the
training of AutoML systems. We consider the second issue as
future work that we intend to address designing data augmenta-
tion techniques for building a more balanced dataset to train the
AutoML system.

The existing AutoML systems provide limited pre-processing
and feature extraction capabilities. Our approach represents a
first attempt towards the development of a new generation of
AutoML systems able to operate in specific scenarios thanks to
data transformation capabilities. The design of the EM adapter
was based on a preliminary analysis of the main features im-
plemented in the existing approaches. This allowed us to get
insights into the design choices to adopt in the creation of the
component.

The existing state-of-the-art approaches for solving EM tasks
are typically based on neural architectures, and in particular on
recurrent neural networks (RNNs), as DeepER and DeepMatcher.
The RNN (e.g., a bi–directional recurring network made up of
LSTM cells in DeepER) is trained to encode the pairs of entities,
input of the network, into multi-dimensional vectors. The appli-
cation of some similarity function to these vectors makes them
a training dataset for a binary classifier. The systems based on
these architectures are highly effective thus demonstrating their
ability in managing the particular schemas adopted by datasets
describing EM tasks.
Insight#1: RNNs are an effective means to represent in a single
multi-dimensional vector the values of the attributes describing
the same feature of pairs of entities.

Training models based on RNN requires large datasets, thus
preventing their use in several business scenarios. To address
this issue, approaches have been experimented RNNs trained on
large “external" knowledge bases and applied to in-production
systems via transfer learning techniques. Transfer learning has
been successfully applied to several ML applications, and to tasks
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related to the EM as in [25] where the problem was recognizing
categories where entity features belong to.
Insight#2: External knowledge-bases can be effectively exploited
in ML architectures addressing EM tasks to reduce the need for
annotated data.

Transformers [23] have recently gained large popularity in the
NLP field. They are deep neural networks that, once trained on a
large corpus, are able to learn the semantics of words better than
conventional word embedding techniques (e.g., Word2vec [15]).
They have also been proved effective in EM tasks [2, 13]. In [13],
for example, a fine-tuning process is applied to a pre-trained Bert
transformer architecture. The dataset is completely denormalized
and, in the resulting text fields, meta-tokens are inserted not to
lose the semantics of the schema. In this way, the knowledge
through which an ML algorithm learns to discriminate between
pairs of matching/non-matching entities is no longer obtained by
comparing the values assumed by pairs of attributes, but emerges
from the analysis of the record as a whole. A broad experimen-
tation of transformers approaches in the field of EM performed
in [2] let emerge two main findings: 1) the transformers can be
used for EM out of the box, without the need for a task-specific
architecture, and 2) fine-tuning a transformer on an EM task
takes relatively little time and requires no particularly capable
hardware.
Insight#3: Transformers serialize in numerical vectors the fields
of EM datasets describing pairs of entities by exploiting a highly-
contextualized analysis of EM data. Their use in EM tasks is a
good compromise between simplicity and performance, and their
fine-tuning does not require high training times and expensive
hardware.

4 IMPLEMENTING AUTOML FOR EM TASKS
The EM adapter is the component in charge of computing an
encoding of a dataset representing EM to be effectively exploited
by an AutoML system. Its functional architecture is based on
the insights defined in Section 3 and consists of three main com-
ponents: the Tokenizer which tokenizes the dataset records into
one or more token sequences; the Embedder which transforms
the token sequences into embeddings; and the Combiner which
generates a single multi-dimensional vector from all embeddings
associated the same dataset entry.
Tokenizer. This component transforms an entity pair (𝑒1, 𝑒2),
described in the records of the EM dataset as a series of attributes
𝑎11, ..., 𝑎1𝑀 , 𝑎21, ..., 𝑎2𝑀 , where 𝑎𝑖 𝑗 is the attribute 𝑗 of the entity
𝑒𝑖 , into one or more token sequences. The component defines
how to combine the values of the records to obtain tokens that en-
able the automatic learning of deep relations between attributes
describing the same features of different entities. There are three
alternative ways for performing this operation: the unstructured,
attribute-based, and hybrid tokenization mode. In the unstruc-
tured mode, all fields describing the entities are concatenated
into a unique sentence and any reference to the dataset schema
is lost. In the attribute-based mode, the dataset entry is tokenized
at the attribute level and the values of the same attribute for
the considered pair of entities are coupled. Through this kind of
tokenization, the records in the EM datasets describing pairs of
entities are broken down into multiple sub-pairs, one for each
attribute. Finally, in the hybrid mode, partial and / or incremental
concatenations of the attribute values are performed. A hybrid
strategy can for example apply an attribute-level tokenization
and then incrementally combine the sub-pairs so that the 𝑖 − 𝑡ℎ

Dataset Type Datasets Size % Match

S-DG

Structured

DBLP-GoogleScholar 28,707 18.63
S-DA DBLP-ACM 12,363 17.96
S-AG Amazon-Google 11,460 10.18
S-WA Walmart-Amazon 10,242 9.39
S-BR BeerAdvo-RateBeer 450 15.11
S-IA iTunes-Amazon 539 24.49
S-FZ Fodors-Zagats 946 11.63
T-AB Textual Abt-Buy 9,575 10.74
D-IA

Dirty

iTunes-Amazon 539 24.49
D-DA DBLP-ACM 12,363 17.96
D-DG DBLP-GoogleScholar 28,707 18.63
D-WA Walmart-Amazon 10,242 9.39

Table 1: Magellan Benchmark

pair contains the values of the first 𝑖 attributes, and the last one
compares the entire original matching pair. The aforementioned
hybrid technique and the attribute-based technique have been
experimented in the paper.

Regardless of the specific implementation, the result of this
step consists of one or more token sequences for each entry of
the original EM dataset.
Embedder. The goal of the Embedder is to encode a token se-
quence into a multi-dimensional vector, i.e., an embedding. The
approach usually adopted in the literature starts from a pre-
trained word embedding deep learning architecture which is
experimented with some token sequences. The embeddings are
generally then extracted from these architectures by averaging
the last hidden layer for each token, but other techniques have
been experimented (the concatenations of the last 4 hidden lay-
ers for each token in [6]). In the paper, we experimented five
embedders: Bert, DistilBert (DBert), Albert, Roberta and XLNET.

The Embedder outputs an embedding for each input token
sequence. Recall that, according to the tokenization strategy
adopted, an entry in the dataset can generate from one to many
embeddings.
Combiner. The embeddings generated from each entry in the
EM dataset are summarized in a single multi-dimensional vec-
tor by the Combiner. The standard approach, experimented in
the paper, for performing this task is to calculate an average
embedding.

5 EXPERIMENTAL EVALUATION
This section aims to provide an experimental answer to three
main questions: 1) How effective are standard AutoML systems
in solving EM tasks (Section 5.1); 2) To which extent the perfor-
mance of AutoML systems applied to the EM task benefit from
data preprocessing techniques (Section 5.2); and 3) How much
AutoML systems pipelined with the EM adapters outperform the
current state-of-the-art EM models (Section 5.3).
Datasets.The experiments have been performed against the datasets
provided by the Magellan library2 which are considered as a stan-
dard benchmark for the evaluation of EM tasks. In Table 1we sum-
marize with some statistic measures the 12 datasets analyzed, re-
porting for each of them the total number of records representing
matching entities (fourth column) and the percentage of records
associated with a matching label (last column). Each dataset is
divided into training, validation, and test sets which were created
with 60-20-20 proportions. The code used in the experiments is
available at https://github.com/softlab-unimore/automl-for-em.

2https://github.com/anhaidgroup/deepmatcher/blob/master/Datasets.md
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AutoSklearn AutoGluon H2OAutoML DeepMatcher

F1 Training
time (h) F1 Training

time (h) F1 Training
time (h) F1 Training

time (h)
S-DG 50.65 1.00 77.85 4.42 64.74 0.97 94.70 8.50
S-DA 92.79 1.00 97.62 2.06 92.51 0.94 98.40 8.50
S-AG 44.10 1.00 23.28 1.57 36.88 0.96 69.30 1.50
S-WA 29.28 1.00 19.12 2.48 31.07 0.94 66.90 2.17
S-BR 40.00 1.00 0.00 0.07 43.24 0.74 72.70 0.08
S-IA 53.33 1.00 50.00 0.13 59.09 0.87 88.00 0.25
S-FZ 100.00 1.00 71.11 0.10 61.90 0.86 100 0.17
T-AB 26.47 1.00 11.41 1.63 27.36 0.94 62.80 3.50
D-IA 64.00 1.00 60.87 0.15 62.75 0.87 74.50 0.17
D-DA 54.74 1.00 89.44 3.07 67.92 0.94 98.10 4.00
D-DG 46.79 1.00 69.05 4.96 43.01 0.97 93.80 8.50
D-WA 25.75 1.00 14.12 2.10 26.31 0.97 46.00 2.50

Table 2: Effectiveness of AutoML systems in EM tasks.

5.1 AutoML systems solving EM tasks
The experiment shows the application of standards AutoML sys-
tems in solving EM tasks. We selected three well-known ap-
proaches, AutoSklearn, AutoGluon, and H2OAutoML. We evalu-
ated their performance as binary classifiers against the chosen
datasets. The AutoML systems have been experimented with
their default configuration, no parameter tuning has been per-
formed. Only the AutoSklearn system required the application
of a data pre-processing step to transform categorical features
(which are not managed by this system) into numerical values.
We performed this operation via a standard Word2Vec embed-
ding, where the average Word2Vec embedding for each token
of non-numeric attributes has been computed and concatenated.
The results of this experiment are shown in Table 2, reporting the
F1 score and the training time of each AutoML system for each
dataset. The last column in the Table shows the scores achieved
by DeepMatcher, in the Hybrid configuration, which we consider
as a baseline3.
Discussion. The AutoML systems are not effective in solving EM
tasks as DeepMatcher. They perform close to DeepMatcher (and
with an average F1 score greater than 75%) in two datasets only (S-
DA and S-FZ). Even if there are small variations among the perfor-
mance achieved, there is no AutoML system that clearly outper-
forms the others: the average F1 scores along all the datasets are
close, ranging from 48.66% for AutoGluon, to 51.4% for H2OAutoML,
and 52.33% for AutoSklearn. Nevertheless, the time required for
training the models was largely varying. H2OAutoML took 1
hour maximum to finalize the training in all the datasets; Au-
toSklearn limits the training time to one hour by default; the
time required for training AutoGluon was larger, more than four
hours for the S-DG and D-DG datasets. We performed a further
experiment, limiting the training time of AutoGluon to 1 hour.
The quality of the results largely decreased and the average F1
score across all datasets dropped to 42.4%.
Lesson Learned. AutoML systems are not competitive when ad-
dressing binary classification problems associated with EM tasks.

5.2 AutoML systems pipelined with EM
adapters

In this section, we evaluate the effectiveness of AutoML systems
coupled with an EM adapter. For this reason, we experimented

3We used the implementation available at https://github.com/anhaidgroup/
deepmatcher

several adapters, obtained by combining possible implementa-
tions for their constituting modules, the tokenizer, the embed-
der and the combiner, introduced in Section 4. In the following,
we report the effectiveness measured in adapters implementing
attribute-based and hybrid tokenizers, where the best results are
obtained. For each kind of tokenizer, five standard transformer
architectures, namely Bert, DistilBert (DBert), Albert, RoBERTa
and XLNET have been evaluated4. For sake of simplicity, we
only consider combiners generating the embeddings from the
last hidden layer for each token and averaging it with the layers
referring to the other tokens. Tables 3 shows the results of this
evaluation for AutoSklearn, AutoGluon and H2OAutoML respec-
tively. The scores of the EM adapters were grouped according
to the tokenization technique (attribute-based vs hybrid). The
F1 scores in bold represent the best result per dataset obtained
for the category of tokenizer considered. The values in bold and
underlined represent the results of the most effective EM adapter
for the considered dataset.
Discussion. We observe that (1) the EM adapters implementing
hybrid tokenizers typically obtain the best performance (only in
3/12 datasets, i.e. S-DA, S-WA and S-FZ, the results are worse);
(2) the Albert embedder achieves the best results (i.e., EM adapter
implementing an Albert embedder is the best solution for 7/12
datasets considering the AutoSklearn system and 8/12 consid-
ering AutoGluon and H2OAutoML). Finally, Table 4 reports an
overall evaluation of the impact of an EM adapter as a prepro-
cessing component for an AutoML system in solving EM tasks.
For each dataset and AutoML system, the F1 scores obtained in
the absence and presence of an EM adapter are reported. The
“No EM-Adapter" column is the reference column showing the
F1 scores obtained by AutoML systems with no EM adapter. The
remaining columns show the average F1 score (through the 5
transformer architectures considered) obtained by the adapters
implementing attribute-based and hybrid tokenizers. Finally, for
each AutoML system, the delta column shows the difference be-
tween the F1 score obtained with no EM adapter and the average
of the two versions including the EM adapters. The experiments
show that adapters significantly improve the effectiveness of
AutoML systems in solving EM tasks in almost all datasets (the
datasets S-FZ for AutoSklearn and S-DA for AutoGluon show
an anomaly result). The average F1 score increases of 24.96%,
28.02% and 23.6% for AutoSklearn, AutoGluon and H2OAutoML
respectively.
Lesson Learned. EM adapters largely improve the effectiveness
of AutoML systems in addressing EM tasks. The experiments
were not able to show a clear winner among the approaches
tested. This is a positive result since it means that the AutoML
technology can benefit from the application of EM adapters.

5.3 EM adapters pipelined with AutoML
systems vs ad hoc solutions

The aim of this experiment is to evaluate if an AutoML system
pipelined with an EM adapter can obtain competitive results with
respect to other state-of-the-art EM models. For this evaluation,
we consider an AutoML system with an EM adapter consisting
of a hybrid tokenizer and an Albert embedder, whose combina-
tion provided the best performances in the previous experiments.

4No fine-tuning technique was applied in the experiments.
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(a) EM-Adapter with AutoSklearn

Attr-EM-Adapter Hybrid-EM-Adapter

Bert DBert Albert Roberta XLNET Bert DBert Albert Roberta XLNET
S-DG 92.70 90.49 92.85 92.11 91.65 93.76 91.92 93.56 92.59 92.77
S-DA 98.10 95.74 96.54 97.89 96.76 96.90 95.73 96.64 96.12 96.22
S-AG 62.11 59.59 66.67 60.07 51.38 66.67 62.60 68.41 61.25 58.74
S-WA 58.05 55.73 67.18 55.21 56.36 56.93 52.36 62.17 48.00 46.92
S-BR 66.67 68.75 73.33 70.97 66.67 64.52 78.79 74.29 74.29 68.97
S-IA 88.46 88.89 83.64 80.77 90.20 83.64 87.27 85.71 88.46 96.30
S-FZ 97.67 97.78 95.24 100.00 93.02 97.67 97.67 95.24 97.67 97.67
T-AB 58.44 57.08 66.37 56.68 54.65 66.97 58.23 76.92 66.36 61.01
D-IA 56.52 58.82 67.92 51.85 64.52 80.70 77.97 91.23 79.25 87.72
D-DA 92.90 91.58 96.30 91.71 93.20 96.58 95.41 96.36 95.20 96.00
D-DG 86.73 85.63 90.29 86.22 86.67 93.00 91.39 93.12 92.76 92.25
D-WA 39.82 45.71 56.02 39.17 37.99 51.38 51.10 62.80 46.23 44.23

(b) EM-Adapter with AutoGluon

Attr-EM-Adapter Hybrid-EM-Adapter

Bert DBert Albert Roberta XLNET Bert DBert Albert Roberta XLNET
S-DG 93.35 91.88 93.53 92.19 92.76 94.30 92.83 94.37 93.25 93.56
S-DA 98.19 97.31 96.85 98.31 97.64 96.67 96.31 96.75 96.32 96.21
S-AG 57.78 50.14 64.61 54.04 45.39 58.06 58.55 64.89 53.40 55.83
S-WA 54.07 58.13 67.04 52.04 52.34 55.46 49.52 64.67 47.88 42.99
S-BR 64.29 66.67 80.00 63.64 64.29 64.29 64.29 81.25 71.43 75.86
S-IA 84.62 88.46 85.19 85.19 79.17 86.79 86.79 92.59 86.79 98.18
S-FZ 97.67 100.00 97.67 97.67 95.24 97.67 100.00 95.24 100.00 100.00
T-AB 58.49 58.72 70.95 56.55 56.76 60.18 64.22 73.97 63.69 59.71
D-IA 69.39 61.90 63.83 58.33 50.00 80.00 77.55 87.27 81.48 82.35
D-DA 93.00 93.12 96.02 91.05 92.97 96.54 95.58 96.76 96.00 95.88
D-DG 88.78 87.78 91.73 87.86 88.45 92.51 92.35 93.10 93.16 92.58
D-WA 32.47 44.52 56.89 33.79 33.55 51.55 49.35 65.56 43.29 39.13

(c) EM-Adapter with H2OAutoML

Attr-EM-Adapter Hybrid-EM-Adapter

Bert DBert Albert Roberta XLNET Bert DBert Albert Roberta XLNET
S-DG 91.52 90.23 92.25 90.08 90.86 92.41 91.87 93.78 92.29 92.16
S-DA 98.08 96.44 96.72 96.57 96.15 96.03 94.45 96.96 94.77 95.58
S-AG 55.02 52.61 61.86 59.11 52.81 61.96 59.19 66.54 60.32 46.51
S-WA 55.07 53.61 65.49 48.28 53.22 49.47 47.89 59.08 46.53 45.49
S-BR 70.97 69.23 78.79 72.00 52.63 66.67 58.33 86.67 70.97 74.07
S-IA 84.62 86.79 84.62 87.27 82.61 80.70 92.00 90.57 86.79 94.34
S-FZ 87.18 92.68 97.67 90.00 84.21 92.68 95.24 92.68 100.00 100.00
T-AB 50.36 50.11 65.88 52.58 51.92 56.19 55.76 70.53 57.01 55.50
D-IA 51.16 56.60 70.37 58.18 80.00 76.67 80.85 80.77 78.43 82.35
D-DA 87.02 89.83 95.02 88.86 90.18 94.41 95.51 96.32 94.55 94.83
D-DG 83.83 84.10 89.85 84.48 83.92 89.87 87.53 92.34 91.90 91.93
D-WA 33.40 38.99 55.37 30.03 33.59 46.60 47.90 61.06 42.79 40.96

Table 3: EM-Adapter effectiveness for AutoML systems.

AutoSklearn AutoGluon H2OAutoML

No
EM-Adapter

Attr-
EM-Adapter

Hybrid-
EM-Adapter Δ

No
EM-Adapter

Attr-
EM-Adapter

Hybrid-
EM-Adapter Δ

No
EM-Adapter

Attr-
EM-Adapter

Hybrid-
EM-Adapter Δ

S-DG 50.65 91.96 92.92 41.79 77.85 92.74 93.66 15.35 64.74 90.99 92.50 27.00
S-DA 92.79 97.01 96.32 3.87 97.62 97.66 96.45 -0.56 92.51 96.79 95.56 3.66
S-AG 44.10 59.96 63.53 17.65 23.28 54.39 58.15 32.98 36.88 56.28 58.90 20.71
S-WA 29.28 58.50 53.28 26.61 19.12 56.72 52.10 35.30 31.07 55.13 49.69 21.34
S-BR 40.00 69.28 72.17 30.72 0.00 67.77 71.42 69.60 43.24 68.72 71.34 26.79
S-IA 53.33 86.39 88.28 34.00 50.00 84.52 90.23 37.38 59.09 85.18 88.88 27.94
S-FZ 100.00 96.74 97.19 -3.04 71.11 97.65 98.58 27.01 61.90 90.35 96.12 31.33
T-AB 26.47 58.64 65.90 35.80 11.41 60.29 64.36 50.92 27.36 54.17 59.00 29.23
D-IA 64.00 59.93 83.37 7.65 60.87 60.69 81.73 10.34 62.75 63.26 79.81 8.79
D-DA 54.74 93.14 95.91 39.79 89.44 93.23 96.15 5.25 67.92 90.18 95.13 24.74
D-DG 46.79 87.11 92.50 43.01 69.05 88.92 92.74 21.78 43.01 85.23 90.71 44.96
D-WA 25.75 43.74 51.15 21.69 14.12 40.24 49.78 30.89 26.31 38.27 47.86 16.76

Table 4: Impact of EM-Adapter on AutoML performance. Bold values indicate the best configuration for a specific AutoML
system; underlined values the best results for the considered dataset.

This system was then compared with the Hybrid variant of Deep-
Matcher. Table 5 reports the results of this comparison. We per-
formed two experiments, in the first we limited the training time
of the AutoML systems to 1 hour. In the second experiment, we
set that time to 6 hours. The offset between the average effec-
tiveness of AutoML systems and DeepMatcher is shown for each
configuration.
Discussion. AutoML systems limited to 1 hour of training show
better effectiveness than DeepMatcher in 5/12 datasets (i.e. S-BR,
S-IA, T-AB , D-IA and D-WA, with an average increase of F1
equal to 9%). In the remaining cases, they generate slightly lower
results, with an average F1 difference of 3.2%. However, we notice
that AutoSklearn used the entire training time budget, but Auto-
Gluon and H2OAutoML took on average a training time of 0.61
h and 0.76 h respectively. Furthermore, DeepMatcher has been
trained for less than 1 hour in only 4/12 datasets. If we consider a

tolerance threshold of 2%, the EM-adapted AutoML systems are
comparable or outperform DeepMatcher in 9/12 datasets. This
trend is further confirmed when we limit the training time to 6
hours. The average F1 score increases of 12% in the 5 datasets
where the AutoML systems obtain the best results. Assuming as
before a 2% tolerance threshold in F1 scores, EM-adapted AutoML
systems are comparable or outperform DeepMatcher in 11/12
datasets. Also in this case, only AutoSklearn used the entire time
budget for training, while AutoGluon and H2OAutoML took an
average of 3.68 hours and 3.24 hours respectively (compared to
2.92 hours of DeepMatcher).
Lesson Learned. AutoML systems pipelined with EM adapters per-
form as or greater than state-of-the-art EM tools.
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DeepMatcher (Hybrid) EM-Adapted AutoMLs (1h time budget) EM-Adapted AutoMLs (6h time budget)

F1 Time (h) AutoSklearn AutoGluon H2OAutoML Δ AutoSklearn AutoGluon H2OAutoML Δ
S-DG 94.70 8.50 93.56 92.98 93.78 -1.26 94.02 94.16 93.82 -0.70
S-DA 98.40 3.75 96.64 96.75 96.96 -1.62 97.08 96.85 97.08 -1.40
S-AG 69.30 1.50 68.41 59.03 66.54 -4.64 68.41 64.53 69.24 -1.90
S-WA 66.90 2.17 62.17 58.01 59.08 -7.15 65.16 66.12 63.50 -1.97
S-BR 72.70 0.08 74.29 81.25 86.67 8.03 76.47 81.25 86.67 8.76
S-IA 88.00 0.25 85.71 92.59 90.57 1.62 91.23 92.59 94.12 4.65
S-FZ 100.00 0.17 95.24 95.24 92.68 -5.61 97.67 97.67 95.24 -3.14
T-AB 62.80 3.50 76.92 69.83 70.53 9.63 76.92 76.88 77.06 14.16
D-IA 74.50 0.17 91.23 87.27 80.77 11.92 91.23 91.23 82.35 13.77
D-DA 98.10 4.00 96.36 97.12 96.32 -1.50 96.36 97.12 97.33 -1.16
D-DG 93.80 8.50 93.12 92.59 92.34 -1.12 93.53 93.38 93.21 -0.43
D-WA 46.00 2.50 62.80 57.05 61.06 14.30 67.77 62.50 65.44 19.23

Table 5: Effectiveness of EM-Adapter with AutoML systems compared to DeepMatcher. Values in bold indicate the best
configuration for a training time budget configuration.

6 CONCLUSION
The adoption of AutoML systems would make machine learning
and deep learning based approaches for addressing EM tasks us-
able also for non-expert people. The direct application of AutoML
systems to the EM problem is not possible. The reason is mainly
due to the schema adopted by the datasets representing EM tasks
whose records encode pairs of entities, and to the classification
problemwhich is highly imbalanced. In this paper, we address the
first problem, by introducing the EM adapter component which
transforms the records of datasets representing entity pairs into
a form which is effectively processable by AutoML systems. Our
experiments show that this approach achieves a performance
similar to the one of EM-task specific systems (but it does not
require expert users to tune it). The future work will try to im-
prove the performance (1) by introducing data augmentation
techniques for creating more balanced training datasets for the
AutoML systems; (2) by experimenting techniques for improving
the embeddings (via "local embeddings" [3], generated taking
into account the current dataset, and/or performing a fine-tune
of the existing techniques).
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