
SOJA: A Memory-efficent Small–large Outer Join for MPI
Liang Liang, Guang Yang, Thomas Heinis

Imperial College London
David Taniar

Monash University

ABSTRACT
The join is a fundamental and widely used operation in data
analytics but equally, it is also one of the most expensive ones.
Considerable work has been carried out to improve and evaluate
join approaches based on popular distributed processing systems
such as Spark and Hadoop, however, it has not been widely
studied on MPI.

In this paper, we first implement, analyse and compare existing
algorithms for the common small-large outer join operation and
develop a novel approach, the swap-based outer join algorithm
(SOJA). SOJA is designed to minimise the expensive communica-
tion between the distributed nodes while also reducing the cost
of the local join operations. We demonstrate the benefits of SOJA
experimentally, showing that it achieves at worst an execution
time similar to its competitors. More importantly, SOJA requires
substantially less memory (typically half the memory compared
to the best competitor) and that memory usage scales very well.

KEYWORDS
Outer Joins, Algorithm, Parallel Processing, MPI

1 INTRODUCTION
Collecting and storing data has never been as easy and as cheap as
today. It comes as no surprise that vast amounts of data are being
stored today and it is predicted that all known data worldwide
will grow to 250 Zettabytes by 2025. Many real-world applications
benefit from the efficient analysis of large amounts of data, be it
for medical applications [1, 2, 13], scientific applications [11] or
commercial applications such as traffic analysis [7] and others.
Analysing this data efficiently and at scale has thus never been
more important than today and is also a considerable challenge.

Crucial in the analysis of large amounts of data is the combi-
nation of multiple datasets before analysis. One central operation
thus is the join operation which combines multiple datasets (or
one with itself) by matching tuples with a shared attribute. More
specifically, a join on datasets 𝑅 and 𝑆 based on equality (or a dif-
ferent relationship) will pair tuples 𝑟 ∈ 𝑅 and 𝑠 ∈ 𝑆 if 𝑟 .𝑐1 = 𝑠 .𝑐2
where 𝑐1 and 𝑐2 are attributes of the tuples. The operation is
frequently used but very costly due to computational overhead
but also because of I/O.

In this paper, we develop the swap-based outer join algorithm
(SOJA), a new approach to the specific problem of the small-
large outer join where a small and a large dataset are joined.
We develop SOJA for Message Passing Interface (MPI) on HPC
infrastructure as such large-scale parallel infrastructure is one of
the few efficient ways to join large datasets [3]. MPI is a message-
passing standard which is widely used in high performance ap-
plications [10]. The standard defines the syntax and semantics of
approximately 250 library routines that allow users to develop
a wide variety of communication operations on different types

© 2021 Copyright held by the owner/author(s). Published in Proceedings of the
24th International Conference on Extending Database Technology (EDBT), March
23-26, 2021, ISBN 978-3-89318-084-4 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

of parallel computing infrastructure[8, 9]. Point to point com-
munication between two MPI processes (ranks) and collective
communication among MPI processes are most commonly used.
For each of them, MPI also provides multiple communication
modes that fall into either blocking or non-blocking communica-
tion according to whether constituent operations of the commu-
nication complete synchronously. Additionally, MPI supports a
derived datatype and a virtual topology which allows users to
control data movement among processes efficiently and flexibly.
MPI thus is a promising tool to design and implement algorithms
to handle and analyze massive amounts of data efficiently.

We use MPI running on HPC infrastructure to efficiently exe-
cute a small-large left outer join. The small-large left outer join
can be denoted as 𝑅 ⊲⊳ 𝑆 with |𝑅 | << |𝑆 | where |𝑅 | and |𝑆 | are
number of tuples in tables or, more generally, datasets 𝑅 and 𝑆 . In
the query below, 𝑅 and 𝑆 represent the left table and right table,
and a join is performed between 𝑅 and 𝑆 based on join keys 𝑅.𝑎
and 𝑆.𝑏:

SELECT * FROM R LEFT OUTER JOIN S ON R.a = S.b;

For parallelising the left outer join, we assume that 𝑅 and 𝑆
are distributed among the 𝑁 processes in a round-robin fashion.
Each partition 𝑅𝑖 is assigned to the 𝑖 − 𝑡ℎ process, and has the
same number of elements |𝑅𝑖 | = |𝑅 |

𝑁
. The same applies to all 𝑆𝑖 .

The parallel left outer join with partitioned data then has two
goals: (1) find all matching tuples from the two tables; (2) find
all dangling tuples from the left table and output them with no
matching tuple from the right table.

Existing approaches mainly adopt two methods, redistribution
and broadcast, to produce the entire join results while guaran-
teeing data locality. Redistribution refers to redistributing both
tables among all processes to make tuples such that the same join
keys are placed in the same process. Broadcast, in this context,
means the left table in each process is duplicated and sent to
all other processes, so that each process holds the complete left
table. These two methods either lead to inevitable skewness or
duplication. SOJA adopts a novel method, swap, to ensures tuples
in the left table can join all possible matching tuples in the right
table by swapping the left table among processes. Based on the
swap method, SOJA can also perform other types of parallel joins
such as inner or right outer joins by replacing local join methods.

As our extensive set of experiments shows, SOJA in many
cases outperforms its competitors and at worst has an execution
time similar to its competitors. Most importantly, however, SOJA
requires substantially less memory which in a supercomputing
environment is crucial (as data cannot easily be swapped to
disk). SOJA typically requires only half the memory and, as our
experiments show, scales extremely well.

In the remainder of this paper we first review the state of the
art in Section 2, present our approach SOJA in Section 3.1, analyse
SOJA experimentally in Section 4 and conclude in Section 5.

2 RELATEDWORK
In this section, we first describe four related parallel outer join
algorithms (Figure 1) and then discuss their limitations and com-
munication implementations on MPI .

Short Paper

Series ISSN: 2367-2005 523 10.5441/002/edbt.2021.62

https://OpenProceedings.org/
http://dx.doi.org/10.5441/002/edbt.2021.62

Figure 1: Illustration of ROJA, DOJA, DER and DDR

2.1 Redistribution Outer Join Algorithm
(ROJA)

ROJA uses the redistribution approach to execute the local outer
join, it has two steps, redistribution and local outer join, which
can be considered as an extension of a typical re-partition join
algorithm [4, 12]. The only difference to a typical re-partition
join algorithm is that ROJA adopts the local outer join in the
second step instead of local inner join. ROJA proceeds as follows:
(1) all tuples of 𝑅𝑖 and 𝑆𝑖 in each process are redistributed based

on the join keys (𝑅𝑖 .𝑎 and 𝑆𝑖 .𝑏).
(2) each process performs a local outer join between reallocated

two tables denoted as 𝑅𝑟𝑒𝑑𝑖𝑠
𝑖

and 𝑆𝑟𝑒𝑑𝑖𝑠
𝑖

.

2.2 Duplication Outer Join Algorithm (DOJA)
DOJA is a variation of the broadcast join algorithm [4, 12]. It
obtains inner join results by performing inner join after broad-
casting the tables similar to broadcast join algorithms. However,
DOJA needs to execute two additional steps to identify dangling
tuples:
(1) each process broadcasts the smaller left table 𝑅𝑖 to all other

processes, which results in each process now having an entire
table 𝑅 denoted as 𝑅𝑏𝑐𝑎𝑠𝑡

𝑖
.

(2) local inner join in each process between 𝑅𝑏𝑐𝑎𝑠𝑡
𝑖

and 𝑆𝑖 outputs
inner join results stored in 𝑇𝑖 .

(3) 𝑇𝑖 and 𝑅𝑖 are redistributed based on join keys (𝑇𝑖 .𝑎 and 𝑅𝑖 .𝑎).
(4) after receiving redistributed 𝑇 𝑟𝑒𝑑𝑖𝑠

𝑖
and 𝑅𝑟𝑒𝑑𝑖𝑠

𝑖
, each process

executes local outer join to output complete result.

2.3 Duplication and Efficient Redistribution
(DER)

DER [14] improves DOJA by reducing the size of the redistributed
data. DER executes as follows:

(1) this step is same as step 1 for DOJA with the only difference
being the addition of ids. DDR needs to add keys to tuples, if
there is no global identifier in 𝑅𝑖 .

(2) a local outer join between 𝑅𝑏𝑐𝑎𝑠𝑡
𝑖

and 𝑆𝑖 generates inner join
results (𝑇𝑖) as well as non-matching tuples.

(3) each process in DER redistributes ids (𝐾𝑖) extracted from
non-matching tuples (𝐷𝑖).

(4) after redistribution, 𝐾𝑟𝑒𝑑𝑖𝑠
𝑖

is filtered so that only keys that
appear 𝑁 times are stored, because a dangling tuple in 𝑅 will
not be matched in all 𝑁 processes. The result is in 𝐾 𝑓 𝑖𝑙𝑡𝑒𝑟

𝑖
.

(5) truly dangling tuples 𝑂𝑖 in the left table can be retrieved by
a local inner join between 𝐾 𝑓 𝑖𝑙𝑡𝑒𝑟

𝑖
and 𝑅𝑏𝑐𝑎𝑠𝑡

𝑖
.

(6) the union of 𝑂𝑖 and 𝑇𝑖 in each process is the final results.

2.4 Duplication and Direct Redistribution
(DDR)

DDR [5] is a broadcast-based outer join algorithm focusing on
optimizing the identification of dangling tuples. Its steps are:
(1) the first two steps of DDR are identical to DER.
(2) each process outputs matched join results (𝑇𝑖) and redis-

tributes non-matching results (𝐷𝑖).
(3) similar to step 4 of DER, dangling tuples after redistribution

(𝐷𝑟𝑒𝑑𝑖𝑠
𝑖

) are kept if they occur 𝑁 times. The results 𝑂𝑖 is
directly outputted.

2.5 Discussion
We will compare the communication cost and local execution
cost between the different approaches.

2.5.1 Communication. The two main methods for commu-
nicating among processes are: (1) redistributing where the tu-
ples are categorized and sent to their respective destinations;
(2) broadcasting, where a table is duplicated across all of the

524

processes. Redistribution requires additional calculation of desti-
nation, thus, the redistribution cost is higher than broadcast cost
(𝑡𝑟𝑒𝑑𝑖𝑠 > 𝑡𝑡𝑟𝑎𝑛𝑠). To compare communication cost of algorithms,
we develop a simple cost model.

𝑐𝑜𝑚𝑚

(𝑅 + 𝑆) × 𝑡𝑟𝑒𝑑𝑖𝑠 (ROJA)
𝑅 × (𝑁 − 1) × 𝑡𝑡𝑟𝑎𝑛𝑠 + (𝑅 +𝑇) × 𝑡𝑟𝑒𝑑𝑖𝑠 (DOJA)
𝑅 × (𝑁 − 1) × 𝑡𝑡𝑟𝑎𝑛𝑠 +𝐾 × 𝑡𝑟𝑒𝑑𝑖𝑠 (DER)
𝑅 × (𝑁 − 1) × 𝑡𝑡𝑟𝑎𝑛𝑠 +𝐷 × 𝑡𝑟𝑒𝑑𝑖𝑠 (DDR)

(1)

In small-large joins, based on the above equation, the commu-
nication cost of ROJA can be very high, since each process in
ROJA has to redistribute the large right table 𝑆𝑖 . The other three
algorithms share a similar broadcast cost. The cost may appear
low initially, but with an increase in the number of processes 𝑁
and the size of left table (|𝑅 |), the cost can grow significantly. The
difference in communication cost between the three broadcast-
based algorithms is that they redistribute different intermediate
data. DOJA redistributes the left table 𝑅 and the inner join result
𝑇 (the size of 𝑇 depends on the selectivity ratio 𝜎 𝑗). With an
increasing 𝜎 𝑗 , the redistribution cost will increase significantly,
thereby dominating the overall performance of DOJA. As a conse-
quence, two improved methods, DDR and DER, were developed
to optimize this stage by redistributing dangling results. DER
uses ids of dangling tuples (𝐾) and DDR uses dangling tuples
(𝐷). The number of dangling ids (|𝐾 |) is the same as the number
of dangling tuples (|𝐷 |), however, the storage size of 𝐾 may be
smaller than 𝐷 . Thus, from the perspective of communication,
DER can outperform DDR. The overall redistribution cost of DDR
and DER is not significant. However, the number of dangling
tuples will increase when the number of processes (𝑁) increase
simply due to the fact that the𝑅 is duplicated in more processes. It
is worth mentioning that redistributing may potentially result in
an unbalanced workload due to skewness. In the presence of data
skew, the overall performance is adversely impacted by the re-
distribution stage as well as subsequent operations. Additionally,
both redistribution and broadcast require more memory.

2.5.2 Local Execution. The existing algorithm mainly involve
two local operations: join (inner join and outer join) and filter.
Their time costs are denoted as 𝑡 𝑗𝑜𝑖𝑛 and 𝑡 𝑓 𝑖𝑙𝑡𝑒𝑟 .

𝑙𝑜𝑐𝑎𝑙

(𝑅𝑟𝑒𝑑𝑖𝑠

𝑖
+ 𝑆𝑟𝑒𝑑𝑖𝑠

𝑖
) × 𝑡 𝑗𝑜𝑖𝑛 (ROJA)

(𝑅 + 𝑆𝑖 + 𝑅𝑟𝑒𝑑𝑖𝑠𝑖
+𝑇 𝑟𝑒𝑑𝑖𝑠

𝑖
) × 𝑡 𝑗𝑜𝑖𝑛 (DOJA)

(2𝑅 + 𝑆𝑖 +𝐾 𝑓 𝑖𝑙𝑡𝑒𝑟

𝑖
) × 𝑡 𝑗𝑜𝑖𝑛 +𝐾𝑟𝑒𝑑𝑖𝑠

𝑖
× 𝑡 𝑓 𝑖𝑙𝑡𝑒𝑟 (DER)

(𝑅 + 𝑆𝑖) × 𝑡 𝑗𝑜𝑖𝑛 +𝐷𝑟𝑒𝑑𝑖𝑠
𝑖

× 𝑡 𝑓 𝑖𝑙𝑡𝑒𝑟 (DDR)

(2)

As we mentioned before, the skewness in the data can result
in an unbalanced workload in subsequent operations and the
performance of ROJA is highly affected by data skew (as data
in some processes after redistribution (𝑅𝑟𝑒𝑑𝑖𝑠

𝑖
, 𝑆𝑟𝑒𝑑𝑖𝑠
𝑖

) may be
significantly bigger than the initial placement (𝑆𝑖 , 𝑅𝑖)). DOJA
not only needs to perform a local join after the broadcast to
compute all inner join results but also needs to identify non-
matching tuples in the left table by joining the redistributed left
table (𝑅𝑟𝑒𝑑𝑖𝑠

𝑖
) and inner join results (𝑇 𝑟𝑒𝑑𝑖𝑠

𝑖
). The cost of a second

join strongly depends on the inner join ratio (𝜎 𝑗) and skewness
degree (𝜃). For DER and DER, a filter step is required after the
local join. DER needs to filter keys which may have a smaller
size in bytes than the tuples filtered by DDR. Thus, in terms of
cost of the filter stage, DER has an advantage. However, after the
filter stage, DDR can directly output dangling tuples while DER

has to retrieve dangling tuples by performing an additional join.
In addition, DER has extra local update costs (𝑅𝑖 × 𝑡𝑢𝑝𝑑𝑎𝑡𝑒) if no
ids are assigned to the left table 𝑅𝑖 .

2.6 Broadcast and Redistribution on MPI
Both broadcast and redistribution are collective communication
in which all processes are participating. For broadcasting in
DOJA, DER and DDR, all processes need to send their partic-
ipating partitions to all other processes. From the point of view
of the receiver, all processes gather data from all other processes,
which can be achieved by the MPI routine MPI_Allgather. Dif-
ferent processes may hold data of different size, we implement
the broadcast by using MPI_Allgatherv which allows each pro-
cess to contribute different amounts of data. As for redistribution,
all processes could be the destination of the redistributed data in
all processes. Such a communication pattern can be supported
by MPI_Alltoall and MPI_Alltoallv which send data from all
processes to all processes. To implement hash redistribution, be-
fore calling these routines, the data needs to be reorganized based
on its corresponding destinations which is determined by the
hash function.

3 SWAP-BASED OUTER JOIN ALGORITHM
(SOJA)

3.1 Approach & Design of SOJA
Compared to existing algorithms that mainly uses redistribution
and broadcasting, SOJA adopts a novel swap approach using a
ring topology to perform the parallel outer join. Additionally,
SOJA decomposes the traditional local outer hash join operations
to hash (create hash table from right table) and lookup (loop over
tuples in 𝑅𝑖 to look up the hash table). Hashing the right table
allows the dangling tuples in the left table to be determined with
a single loop for a left outer join. The steps for SOJA are:
(1) each process creates a hash table (𝐻𝑆𝑖) for the right table

(𝑆𝑖). It then loops over the tuples in the left table (𝑅𝑖) to
query the hash table 𝐻𝑆𝑖 , meanwhile marking non-matching
tuples in the 𝑅𝑖 as candidates for dangling tuples. Finally, the
intermediate inner join results will be directly returned.

(2) each process sends the updated 𝑅𝑖 to the next process (𝑖 + 1)
in the ring topology. Note, the (𝑁 − 1) − 𝑡ℎ process will send
𝑅𝑁−1 to process 0.

(3) a lookup would be carried out on the new set of 𝑅𝑖 and 𝐻𝑆𝑖 ,
and the intermediate results would be outputted. The non-
matching mark will be removed if the candidate tuple is able
to find a match.

(4) repeat steps 2 & 3 𝑁 − 1 times, and output the tuples in each
of the 𝑅𝑖 with marks as dangling tuples in the last iteration.
The cost model of the iterative operations is the following:

𝑆𝑂𝐽𝐴

{
𝑅 × (𝑁 − 1) × 𝑡𝑡𝑟𝑎𝑛𝑠 (comm)
(𝑅 + 𝑆𝑖) × 𝑡 𝑗𝑜𝑖𝑛 + 𝑅 × 𝑡𝑢𝑝𝑑𝑎𝑡𝑒 (local)

(3)

From perspective of cost model, the communication cost is
the same as the broadcast operation, the total join cost of SOJA is
also the same as outer join after the broadcast in DER and DDR.
However, no redistribution, filter, or additional joins are required
by SOJA. It identifies non-matching tuples in the left table and
updates the left table 𝑅 while looping. Additionally, the cost of
𝑡𝑢𝑝𝑑𝑎𝑡𝑒 is not significant, due to the left table being small.

Further, compared to existing methods, SOJA saves memory
for the following reasons: (1) directly outputs of the intermediate

525

results after each iteration, (2) no duplication of tables, and (3)
no temporary dangling data as the size of temporary data can
increase with the number of processes as well as with the se-
lectivity ratio in the left table 𝜎𝑅 . In addition, SOJA can easily
be extended to perform other types of joins such as inner join
or right outer joins. For example, inner join is executed by per-
forming a local lookup without marking and updating dangling
tuples in the left table. For right outer joins, SOJA simply flips the
operation by creating a hash table for the left table and updating
the marks on the right table.

Although, there is no redistribution in SOJA, its performance
is still sensitive to an imbalanced workload among processes, es-
pecially due to imbalanced initial placement as there are synchro-
nization costs for communication. Therefore, for SOJA, initially
placing partitions of equal size is a prerequisite for achieving
ideal performance.

3.2 Swap of SOJA on MPI
We use Cartesian topology routines MPI_Cart_create with 1-
dimension to construct SOJA’s ring topology in which each pro-
cess is logically connected to two other processes (𝑙𝑒 𝑓 𝑡 and 𝑟𝑖𝑔ℎ𝑡
process) in a circle. In the ring topology, point to point commu-
nication routines (MPI_Send and MPI_Recv) can be used to swap
data between adjacent processes. To reduce the synchronization
costs, we use non-blocking mode (MPI_Isend and MPI_Irecv)
to transfer data that can overlap other local operations, such as
result output or other operations based on intermediate results.
The swap stage of SOJA is shown in Algorithm 1.

Algorithm 1: Swap in SOJA
1: Require: 𝑅𝑖 , 𝑁 , left and right neighbour 𝑙𝑒 𝑓 𝑡 and 𝑟𝑖𝑔ℎ𝑡
2: 𝑟𝑒𝑐𝑣_𝑏𝑢𝑓 𝑓 𝑒𝑟 = 𝑅𝑖
3: for 𝑖 = 1 to 𝑖 = N-1 do
4: 𝑠𝑒𝑛𝑑_𝑏𝑢𝑓 𝑓 𝑒𝑟 = lookup_and_update(𝑟𝑒𝑐𝑣_𝑏𝑢𝑓 𝑓 𝑒𝑟)
5: MPI_Isend(𝑠𝑒𝑛𝑑_𝑏𝑢𝑓 𝑓 𝑒𝑟 , dest = 𝑙𝑒 𝑓 𝑡 , 𝑠𝑒𝑛𝑑_𝑅𝑒𝑞𝑢𝑒𝑠𝑡)
6: MPI_Irecv(𝑟𝑒𝑐𝑣_𝑏𝑢𝑓 𝑓 𝑒𝑟 , source = 𝑟𝑖𝑔ℎ𝑡 , 𝑟𝑒𝑐𝑣_𝑅𝑒𝑞𝑢𝑒𝑠𝑡)
7: overlapping: output result
8: MPI_Wait(𝑠𝑒𝑛𝑑_𝑅𝑒𝑞𝑢𝑒𝑠𝑡)
9: MPI_Wait(𝑟𝑒𝑐𝑣_𝑅𝑒𝑞𝑢𝑒𝑠𝑡)
10: end for
11: 𝑟𝑒𝑠𝑢𝑙𝑡 = lookup_and_update(𝑟𝑒𝑐𝑣_𝑏𝑢𝑓 𝑓 𝑒𝑟)

4 EXPERIMENTAL EVALUATION
In the following section, we analyse SOJA using experiments
with changing the size of left table (|𝑅 |), selectivity ratio of left
table (𝜎𝑅), and skewness degree (𝜃). We focus on execution time
and memory usage.

4.1 Setup
4.1.1 Platform. We use an HPC cluster with Intel E5-2680 v3

@ 2.50GHz running Centos 8. The MPI version is 3.3.2.

4.1.2 Datasets. The experiments are based on customer and
supplier tables from the TPC-H benchmark [6]. For simplicity
and consistency of presentation, we use 𝑅 and 𝑆 to represent
customer and supplier respectively. To test the algorithms with
different scenarios, we modify the data in two ways: first, we
scale up or scale down the table size (|𝑅 | and |𝑆 |) by sampling data
from the two initial tables (uniform with replacement). Second,
we vary the selectivity ratios, i.e., the join selectivity ratio (𝜎 𝑗)

and the selectivity ratio in the left table (𝜎𝑅). The selectivity
ratio affects the number of join results (|𝑇 |) and can be roughly
controlled by the sample population of join key 𝑛 with uniform
distribution, which can be explained using Equations 4 to 6.

The definition of 𝜎 𝑗 is:

𝜎 𝑗 =
|𝑇 |

|𝑅 | × |𝑆 | (4)

If we sample the join key from a population that contains 𝑛
values and denote the probability of choosing 𝑖 − 𝑡ℎ item as 𝑝𝑖 ,
then:

𝜎 𝑗 =

∑𝑛
𝑖=1 𝑝𝑖 × |𝑅 | × 𝑝𝑖 × |𝑆 |

|𝑅 | × |𝑆 | =

𝑛∑
𝑖=1

𝑝2𝑖 (5)

If 𝑝𝑖 is a uniform distribution, 𝑝𝑖 = 1
𝑛 , then:

𝜎 𝑗 =
1
𝑛

(6)

The selectivity ratio in the left table (𝜎𝑅) determines the number
of dangling tuples in the left table. With the involvement of 𝜎𝑅 ,
the number of results can be estimated by Equation 7.

|𝑇 | = |𝑅 | × 𝜎𝑅 × |𝑆 | × 𝜎 𝑗︸ ︷︷ ︸
inner join results

+ (1 − 𝜎𝑅) × |𝑅 |︸ ︷︷ ︸
dangling results

(7)

If 𝜎𝑅 equals to 0, this means no tuples in table 𝑅 are selected
to perform the join with table 𝑆 . Therefore, table 𝑅 will be the
result. As 𝜎𝑅 increases, the number of matching results increases
whereas the non-matching results decrease until all tuples in
𝑅 are involved in the join when 𝜎𝑅 equals to 1. We assign a
negative join key to number of tuples in table 𝑅 based on 1 - 𝜎𝑅
[5]. Therefore, any tuple with a negative key in the left table (𝑅)
will not have any matching results. Both 𝜎 𝑗 and 𝜎𝑅 can influence
|𝑇 |, but in outer joins, 𝜎𝑅 will provide more insights (dangling
tuples), so our experiments focus on 𝜎𝑅 to study changes of |𝑇 |
and only use 𝜎 𝑗 to keep the number of potential inner join results
(when 𝜎𝑅 = 1) unchanged when varying the input data size.

To achieve the parallel IO, we split the data into 𝑁 partitions
and processes load their partition from disk in parallel.

4.2 Impact of the Size of the Left Table
To examine how the performance of approaches changes when
the size of left table increases, we conduct the experiment in
which we vary |𝑅 | and keep all other parameters such as |𝑆 |, 𝜎𝑅 ,
fixed. All five algorithms are executed on 32 cores and 64 cores
and we measure execution time and memory usage.

In this experiment, we set |𝑆 | to 5×107, 𝜎𝑅 to 0.5, and increase
|𝑅 | with a coarser granularity (10×) from 103 to 107. Figure 2
shows that all algorithms maintain a stable performance until
|𝑅 | reaches 106. We further explored changes of the performance
with a fine-grained increase of |𝑅 | (increment of 106 tuples) in
the interval between 106 and 107. The result from 32 processes
and 64 processes (Figure 2 A & C) shows that the execution time
of ROJA is steady whereas execution time of all other algorithms
has a clear upward trend. Figures 2 B & D indicate that SOJA has
an advantage in terms of memory usage across all experiments.
Although ROJA has the highest memory usage when |𝑅 | is small,
the memory usage level stays quite constant with increasing |𝑅 |.
The other three broadcast-based algorithms show that their mem-
ory usage increases significantly, particularly DDR. It is worth
pointing out that when |𝑅 | is relatively large, the performance of
DDR on 64 processes is worse than itself on 32 processes.

526

Figure 2: Execution time and memory usage against |𝑅 |, wide ranges |𝑅 | from 103 to 107, narrow is from 106 to 107. (A) time
vs 𝑁 for 32; (B) memory usage vs 𝑁 for 32; (C) time vs 𝑁 for 64; (B) memory usage vs 𝑁 for 64;

Figure 3: Execution time against selectivity ratio of left table over varying number of processes: (A - D): execution time
for 𝑁 = 4, 32, 64, 512; (E - H): memory usage for 𝑁 = 4, 32, 64, 512;

Figure 4: Execution time and memory usage ratio against skewness degree: (A) execution time for 𝑁 = 32; (B) memory
usage ratio 𝑁 = 32; (C) execution time for 𝑁 = 64; (D) memory usage ratio for 𝑁 = 64;

Both execution time and memory usage in ROJA are not con-
siderably affected by changes in |𝑅 |, because the cost of ROJA is
dominated by the large table (although 𝑅 increases, it is still at
least 5 times smaller than |𝑆 |). The broadcast cost and subsequent
local join between 𝑅 and 𝑆𝑖 in DOJA, DER and DDR increases

with the growth of 𝑅, increasing both execution time and mem-
ory usage. Furthermore, dangling tuples candidates after the
first local outer join will also increase as 𝑅 increases. Therefore,
DER and DDR have to redistribute and filter more data to iden-
tify non-matching tuples. The number of candidates is roughly

527

|𝑅 | × (1−𝜎𝑅) ×𝑁 . Unlike DER which use ids, DDR directly works
with tuples; therefore, its execution time and memory usage in-
creases dramatically with an increase of |𝑅 | and 𝑁 . As for SOJA,
the swap step becomes more expensive with the growth of |𝑅 |.
Overall, we can see that when |𝑅 | is 10 times less than |𝑆 |, DER,
DDR and SOJA outperform ROJA in both time and memory.

4.3 Effect of Selectivity Ratio of Left Table
These experiments examine the algorithms’ performance with
different 𝜎𝑅 from 0.0 to 1.0 using a varying number of processes
(4, 32, 64, 512). We set |𝑅 | to 105 and |𝑆 | as 5 × 107, and the 𝜎 𝑗 to
10−5.

The results in Figure 3 (A - D) show that the overall execution
time has an upward trend with an increase of 𝜎𝑅 as a high 𝜎𝑅
leads to an increase of the result size and thereby increasing IO
costs. The execution time of DOJA increases dramatically since
DOJA has to redistribute and perform a second local join based on
increasing inner join results. Overall, DER, DDR and SOJA share
a similar performance which outperform the two conventional
algorithms. The upward trend stabilizes with increasing number
of processes due to reduction of local IO costs. Figure 3 (E - H)
shows the change of memory usage with increase of 𝜎𝑅 . When
𝜎𝑅 is small, the redistribution cost in ROJA takes a considerable
amount of memory, and it require even more memory to hold
join results as 𝜎𝑅 increases. DOJA uses more memory compared
to the other two broadcast algorithms because it redistributes
the inner join results rather than the dangling tuples.

4.4 Effect of Data Skewness
To test the effect of skewness, we use the Zipf distribution model
and the number of tuples for both tables after redistribution in
the 𝑖 − 𝑡ℎ process (|𝑅𝑟𝑒𝑑𝑖𝑠

𝑖
| and |𝑆𝑟𝑒𝑑𝑖𝑠

𝑖
|) is the following:

|𝑅𝑟𝑒𝑑𝑖𝑠𝑖 | = |𝑅 |
𝑖𝜃 ∗∑𝑁𝑗=1 1

𝑗𝜃

(8)

To generate data with skew, we sample multiple datasets with
the join key using a Zipfian distribution with different degrees
𝜃 from 0.1 to 0.9. We set |𝑅 | as 105, |𝑆 | as 2 ×107, and 𝜎𝑅 as 0.5.
In this experiment, we examine how execution time as well as
memory usage changes on 32 and 64 processes with an increase
of 𝜃 . In case of skewness, the execution time is determined by
the process with the biggest workload. To make the memory
usage results meaningful, we use a memory usage ratio, which is
the maximum memory usage among all processes over the total
memory usage, instead of total memory usage.

Experiments on both 32 and 64 processes (Figure 4) show that
the degree of skewness has a significant impact on execution time
and memory usage ratio of ROJA and DOJA due to unbalanced
workload caused by the redistribution step. Although DER and
DDR also feature a redistribution operation, their performance
remains stable as 𝜃 changes. This is because, in this experiment,
the number of dangling tuples/ids to redistribute is relatively
small due to the small |𝑅 |. The memory ratio in Figure 4 (B & D)
also reflects that both DER and DDR have a relatively balanced
memory usage. Since this skewness is about data skew in the
join key rather than the initial placement, both memory and
execution performance of SOJA are not much affected by 𝜃 .

4.5 Discussion
ROJA, as a general-purpose outer join algorithm, does not have
an outstanding performance when the left table’s size is very

small. Although ROJA is less affected by changes in the selectiv-
ity ratio in the left table, its performance with high data skew
drops dramatically. Another conventional algorithm, DOJA, has
no outstanding performance inmost cases because it has to broad-
cast the entire left table and redistribute the entire inner results,
which is particularly bad when the join selectivity ratio is large.

In small-large outer joins, DER shows an outstanding per-
formance over most cases as it optimizes the redistribution by
focusing on ids to identify dangling tuples. Using ids of dangling
tuples makes DER less affected by the selectivity ratio and skew-
ness. As a DER competitor, DDR adopts a simpler procedure,
directly redistributing and filtering based on the dangling tuples
itself. DER and DDR share the core methodology and their per-
formance in both time and memory aspects is also similar in
most cases. However, when the number of the tuples in the left
table increases, the performance of DDR becomes the worst since
the size of candidates of dangling tuple in bytes increases both
computation and memory costs.

SOJA achieves a similar (sometimes better) performance than
DER and DDR in terms of time costs in most cases and outper-
forms all competitors in terms of memory usage. Additionally,
SOJA is less affected by data skewness and selectivity ratio since
there is no redistribution operation in SOJA.

5 CONCLUSIONS
In this paper, we implemented four existing parallel outer join
algorithms in MPI and proposed a new algorithm SOJA. SOJA
does not simply optimize one specific part of existing algorithms;
it provides an entirely novel approach, swap, to perform outer
joins. The experiment based onHPC infrastructure shows that the
performance of SOJA is outstanding, especially in memory usage.
Further, we will investigate whether SOJA can be used in other
joins, such as inner join, with the same benefits. Additionally, the
feasibility of the swap approach in parallel spatial joins will be
explored in future works.

REFERENCES
[1] Ablimit Aji and Fusheng Wang. 2012. High Performance Spatial Query Pro-

cessing for Large Scale Scientific Data. In SIGMOD/PODS ’12 PhD Symposium.
[2] Ablimit Aji, Fusheng Wang, and Joel H. Saltz. 2012. Towards Building a High

Performance Spatial Query System for Large Scale Medical Imaging Data. In
SIGSPATIAL ’12.

[3] Claude Barthels, Ingo Müller, Timo Schneider, Gustavo Alonso, and Torsten
Hoefler. 2017. Distributed join algorithms on thousands of cores. PVLDB 10, 5
(2017).

[4] Spyros Blanas, Jignesh M Patel, Vuk Ercegovac, Jun Rao, Eugene J Shekita,
and Yuanyuan Tian. 2010. A comparison of join algorithms for log processing
in mapreduce. In SIGMOD ’10.

[5] Long Cheng, Ilias Tachmazidis, Spyros Kotoulas, and Grigoris Antoniou. 2017.
Design and evaluation of small–large outer joins in cloud computing environ-
ments. J. Parallel and Distrib. Comput. 110 (2017), 2–15.

[6] Transaction Processing Performance Council. 2008. TPC-H benchmark speci-
fication. Published at http://www. tcp. org/hspec. html 21 (2008), 592–603.

[7] TLC Trip Record Data. 2020. https://www1.nyc.gov/tlc.
[8] Victor Eijkhout. 2017. Parallel Programming in MPI and OpenMP. Lulu. com.
[9] William Gropp, William D Gropp, Ewing Lusk, Anthony Skjellum, and Ar-

gonne Distinguished Fellow Emeritus Ewing Lusk. 1999. Using MPI: portable
parallel programming with the message-passing interface. Vol. 1. MIT press.

[10] William Gropp, Torsten Hoefler, Rajeev Thakur, and Ewing Lusk. 2014. Using
advanced MPI: Modern features of the message-passing interface. MIT Press.

[11] Henry Markram. 2006. The Blue Brain Project. Nature Reviews Neuroscience 7,
2 (2006), 153–160.

[12] David Taniar, Clement HC Leung, Wenny Rahayu, and Sushant Goel. 2008.
High-performance Parallel Database Processing and Grid Databases. Vol. 67.

[13] Fusheng Wang, Ablimit Aji, and Hoang Vo. 2014. High Performance Spatial
Queries for Spatial Big Data: From Medical Imaging to GIS. SIGSPATIAL
Special 6, 3 (2014).

[14] Yu Xu and Pekka Kostamaa. 2010. A new algorithm for small-large table outer
joins in parallel DBMS. In ICDE 2010.

528

	SOJA: A Memory-efficent Small–large Outer Join for MPILiang Liang, Guang Yang, Thomas Heinis, David Taniar

