
On Supporting Scalable Active Learning-based Interactive
Data Exploration with Uncertainty Estimation Index

Xiaoyu Ge
University of Pittsburgh

xiaoyu@cs.pitt.edu

Panos K. Chrysanthis
University of Pittsburgh

panos@cs.pitt.edu

ABSTRACT
Driven by the exponential growth in data volume and complexity,
and the increasing demand to extract concealed value from it,
interactive data exploration (IDE) approaches have recently re-
ceived a great amount of attention in both industry and academia.
To achieve interactiveness, most existing active learning-based
IDE systems operate on main-memory databases, which inher-
ently limits the scalability of these IDE systems. In this paper, we
propose a novel indexing mechanism, called Uncertainty Estima-
tion Index (UEI), which supports the interactivity and scalability
of the active learning-based IDE systems. UEI combines hierar-
chical in-memory indexing with columnar and inverted-indexing
based secondary storage mechanism. It achieves scalability and
efficiency through a dynamic estimation of the set of data that
are most beneficial to the current exploration. By intelligently
manage the in-memory cache, UEI enables active learning-based
IDE systems to scale beyond the main memory restriction, while
maintains the desired accuracy and convergency speed. We exper-
imentally evaluated UEI using a state-of-the-art IDE system with
two schemes, one incorporating UEI, and one utilizing a standard
DBMS. We measure the efficiency of the proposed solution using
a large real-world dataset placed on the secondary storage. Our
experiments show that (1) UEI version outperforms the DBMS
one by providing more than 50x runtime efficiency when the size
of the dataset exceeds the main memory capacity, and (2) is capa-
ble of achieving sub-second interactive response time for data that
is 100 times larger than the available memory while achieving the
desired exploration accuracy and effectiveness.

1 INTRODUCTION
In recent years, as the data has grown rapidly in both complexity
and volume, the traditional search methods relying on explicit key-
words or queries can quickly lose their effectiveness. As reported
in previous studies [15], it is often difficult for users to construct
precise articulations that describe their interests. In such cases,
traditional search methods usually fail to deliver satisfying results,
and the user often needs to deal with results that are too big in size
due to loose queries or keywords. Consequently, to obtain a satis-
fying result, users need to execute numerous ad-hoc queries with
tightened conditionals to reduce the search space, which requires a
considerable amount of time and human effort. Thus, novel inter-
active data exploration (IDE) techniques that aim to assist users
in finding their intended items has generated a significant amount
of interest in research communities [2, 7, 9, 10, 12, 13, 16].

One of the core features of these IDE systems is to employ
human-in-the-loop (HIL) exploration processes to minimize the
overall user effort and time in finding the relevant data items. In-
stead of providing inaccurate results with one generic predictive
model (i.e., engine), by leveraging human-in-the-loop, a uniquely

© 2021 Copyright held by the owner/author(s). Published in Proceedings of the 24th
International Conference on Extending Database Technology (EDBT), March 23-26,
2021, ISBN 978-3-89318-084-4 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

learned predictive model can be created rapidly for each indi-
vidual user and task. To do so, a common solution to support
effective human-in-the-loop operations is to leverage active learn-
ing techniques [20]—active learning refers to a set of machine
learning approaches that aim to learn an accurate predictive model
with minimum labeled data for regression and classification tasks.
Clearly, the goal of active learning naturally aligns with the needs
of many human-in-the-loop techniques as they seek to quickly
and accurately deliver the results that the user needs with a per-
sonalized, predictive model.

In previous works, numerous active learning techniques [5, 8,
14, 20–22] have been proposed to boost the convergence of train-
ing a predictive model. Among these query strategies, uncertainty
sampling is the most commonly used one because of its simplic-
ity and efficiency, as pointed out in [20]. Uncertainty sampling
trains each predictive model in an iterative fashion, wherein each
iteration, it identifies the unlabeled items that are closest to the
current decision boundary of the predictive model as these items
are believed to be most uncertain. Uncertainty Sampling then
solicits the user’s label on the identified sample and utilizes it in
the training of the predictive model.

Although uncertainty sampling is more efficient than alterna-
tive active learning methods, in order to find the most uncertain
object, it still needs to perform an exhaustive search over the entire
database. Therefore, in the case where the size of the data is larger
than the main memory capacity, those data that resides on the
secondary storage must be loaded into memory at each interation.
Due to the limitation imposed by physical I/O of the secondary
storages, it takes a significant amount of time for active learning
techniques to scan datasets that are considerably larger than the
main memory. This essentially makes it impossible for any active
learning-based IDE system to explore datasets that are larger than
the available memory. As pointed in [15], run time efficiency is
critical for the IDE systems as any response time excesses 500ms
will severely impact the user’s engagement, and hence hinders
the usability of the system. Moreover, as the exploration could
occur on any subset of the attributes of the dataset, it is nearly
impossible to apply any typical indexing in advance to support the
exploration task over any arbitrary combination of the attributes.

In order to achieve interactiveness, existing uncertainty sampling-
based IDE systems rely on main memory to cache the entire
dataset. For datasets that are larger than the main memory, a sub-
set of data objects will need to be sampled from the original dataset
on secondary storage (e.g., [7]). While simple and intuitive, this
approach could easily lead to very inaccurate results and a waste
of user effort since the boundaries of the interesting data regions
in the sampled space is likely to be different from the original
space [9]. Moreover, small sets of relevant data regions may even
be ignored in the resulting sample set.

To overcome this problem, we propose a novel indexing mech-
anism coined Uncertainty Estimation Index (UEI), to facilitate
the interactivity and scalability of active learning-based IDE sys-
tems. To our knowledge, UEI is the first approach in extending
the scalability of active learning-based IDE systems beyond the
main memory capacity.

Short Paper

Series ISSN: 2367-2005 421 10.5441/002/edbt.2021.45

https://OpenProceedings.org/
http://dx.doi.org/10.5441/002/edbt.2021.45

Instead of relying solely on the main memory to cache the
whole dataset during the exploration, UEI enables caching in
memory only the necessary subsets of the data that are needed by
the current stage of the exploration. This is achieved through the
combination of an effective estimation of the uncertainty of each
data object and an efficient data storage mechanism. The essential
observation that UEI is based on is that data objects often have
additional information that can be used to infer their relationship
with other objects, one of which is the similarity among data
objects. Since the uncertainty essentially represents its distance
to the current decision boundary in the high-dimensional data
space, thus the uncertainty of an object x is strongly related to
the uncertainty of the surrounding objects [14]. This observation
allows UEI to informatively select the set of highly uncertain
data objects to be loaded into memory before it is needed by the
predictive model. Hence, the amount of memory needed to explore
a dataset in real-time is significantly reduced.

To evaluate UEI, we employed a state-of-the-art data explo-
ration system REQUEST [9], and compare the performance of
UEI against MySQL, which is used by the existing interactive data
exploration systems [7, 12]. Our results using a large real-world
dataset, namely the Sloan Digital Sky Survey (SDSS) [1], show
that UEI outperforms existing solutions by more than 50X in run-
time efficiency when the size of the dataset goes beyond the main
memory capacity. Furthermore, UEI is well capable of meeting
the sub 500 millisecond interactive response time requirement
for data that is at least 100 times larger than the main memory
capacity, while achieving minimum impact on the convergence of
the predictive model.

It should be noted that even though UEI is designed for the IDE
systems, where response time and run time efficiency is critical, it
can also be used in combination with any active learning-based
human-in-the-loop (HIL) applications. Examples of such human-
in-the-loop applications including but not limited to: record match-
ing [3], entity resolution [18, 19], and facts checking [4].

2 BACKGROUND
In this section, we provide the necessary background of our UEI.

2.1 Active Learning
Active learning refers to a set of approaches that aim to learn
an accurate model with minimum labeled data for regression
and classification tasks. One key component of active learning is
the query strategy that sequentially selects the most informative
unlabeled sample (i.e., data object) from the entire database to be
labeled by the user.

In previous works, a number of active learning techniques
have been proposed to define the “informativenes” of samples
[20], including: Uncertainty Sampling [14], Query-By-Committee
[21], Expected Model Change [5], Expected Error Reduction [22],
and Expected Model Output Change [8]. These techniques are
often interchangeable, providing the applications the flexibility to
choose the most appropriate query strategy that fits their needs.
Among the query strategies, Uncertainty Sampling [14] is the
most commonly used because of its simplicity and efficiency [20].

Uncertainty Sampling is a query strategy that can be used
with any probability-based predictive model (e.g., Naive Bayes,
SVM, etc.). The intuition of Uncertainty Sampling is that patterns
with high uncertainty are hard to classify, and thus, if the labels
of those patterns are obtained, they can boost the accuracy of the
classification models. Particularly, in binary classification models
(e.g., with class labels 0 and 1), the most uncertain example x
is the one which can be assigned to either class label z (x) with

Algorithm 1 Typical Workflow of Active Learning-based IDE

Require: The raw data set D; Batch Size B
Ensure: A set of results R

1: Labeled set L ← ∅
2: Unlabeled set U ← D
3: M ← initialize query strategy
4: while user continues the exploration do
5: for i = 1 to B do
6: Choose one x from U using M
7: Solicit user’s label on x
8: L ← L ∪ {x }
9: U ← U − {x }

10: end for
11: M ← trained with L to update M .
12: end while
13: Return the set of results R classified as positive by M .

probability 0.5. Inspired by the idea of uncertainty, also known as
least confidence (lc), [14] proposes a measurement of uncertainty
for binary classification models:

u (lc) (x) = 1 − p (ŷ |x) (1)

where u (lc) (x) is the uncertainty score with the least confidence
measurement of x, and ŷ is the predicted class label of the un-
labeled x. Accordingly, after measuring the uncertainty of each
unlabeled sample, the unlabeled sample with highest uncertainty
is selected:

x∗ = argmaxxu (x) (2)
where u (x) can be any other measurement of informativeness over
the unlabeled sample x.

2.2 Interactive Data Exploration
Active learning-based IDE systems can effectively find relevant
items that are often undiscoverable using traditional search meth-
ods [7, 9, 10, 12]. In particular, active learning-based IDE systems
do not require users to formulate any complex queries, nor does
it need any form of description of the target items. The entire
exploration can be done by answering simple binary (i.e., yes
or no) questions. More importantly, active learning-based IDE
systems can further be used to enhance traditional search results.
For instance, they can be used to address the problem of having
overwhelming results due to a broad query or search conditions.

As shown in Algorithm 1, a typical active learning-based IDE
system works in the following steps: first it incorporates a query
strategy (e.g., uncertainty sampling), which is used for selecting
the example objects to be presented to the user for labeling (line
3). As long as the user is willing to label more examples (line 4),
active learning-based IDE system will keep invoking the query
strategy M to select a new example object x from D, and present
it to the user to label it as relevant or irrelevant (lines 5-9). Once
the amount of labeled samples received from the user reaches a
sample batch size (denoted as B), which is a tunable parameter
of the active learning-based IDE balancing the effectiveness and
efficiency, then the classifier model employed by the query strategy
will be updated according to the label assigned to x (line 11).
In particular, the label assigned to x will be used for retraining
the classifier model, which is an essential step towards selecting
the object presented to the user in the next iteration. Once the
iterative labeling process is completed, the obtained results will
be presented to the user (line 13).

422

Figure 1: Illustrates UEI with a 2D data space, each grid rep-
resents a subspace, the dot in the center of each grid repre-
sents a symbolic pointp. With chunks stored as separated files
on the secondary storage.

3 UNCERTAINTY ESTIMATION INDEX
Maintaining interactive response time for large datasets that are
beyond the main memory capacity has always been one of the ma-
jor challenges of active learning-based IDE systems. In tackling
this problem, we focused our efforts on uncertainty sampling and
proposed a novel index approach coined Uncertainty Estimation
Index (UEI). Our UEI can be easily incorporated in any existing
systems that leverage the uncertainty sampling and can be used in
conjunction with any probabilistic-based classifiers as discussed
in [14]. In the next section (Section 3.1) we provide the details
of UEI’s main component, and discuss how UEI leverages the
inverted index-based data secondary storages to support scalable
exploration. Following that, in Section 3.2, we provide a walk-
through of a complete example to illustrate how a typical active
learning-based IDE workflow (i.e., Algorithm 1) performs when
enhanced with UEI.

3.1 UEI Components
A key observation underlying UEI is that data objects often have
additional information that can be used to inference their rela-
tionship with other objects, one of which is the similarity (i.e.,
distance) between data objects [14]. In other words, the uncer-
tainty value of an object x is strongly related to the uncertainty
of the surrounding objects. For example, if x is located near to
one of the current decision boundaries, then x would have higher
uncertainty due to a mixed set of relevant and irrelevant neighbors.
Such continuity between data points is also generally assumed in
both supervised and semi-supervised learning algorithms where
data points that are closer to each other are more likely to share a
label [23]. More precisely, we observed that the uncertainty of a
data object x can be approximated through its spatial relationships
with the labeled data objects. UEI explores this spatial relation-
ship to load into memory the set of highly uncertain data objects
before they are needed by the query strategy.

Specifically, as illustrated in Figure 1, the main idea of UEI is
to divide the exploration space D into equal-size subspaces (i.e., d-
dimensional grids) дi ’s of D (дi ∈ D), and build a set of symbolic
(virtual) index points P = {p1, ...pc }, such that each index point
pi represents a subspace дi . In each iteration, UEI estimates the
uncertainty of each subspace based on the uncertainty of its corre-
sponding index point p, then loads only the data in the subspace
that is predicted to be most uncertain into memory. Conceptually,
UEI is based on the same principle as hash-based multidimen-
sional indexing, such as the traditional grid file structures, which
splits the space into a non-periodic grid where one or more cells

Figure 2: Before storing the data, UEI vertically decompose
the data into an inverted index form, and then store them in
separate chunks.

of the grid refer to a small set of points. As opposed to a grid file,
designed to efficiently reference a single value with multiple keys,
UEI is designed to scale out the uncertainty sampling by estimat-
ing the distribution of the uncertainty of data objects through the
set of symbolic index points.

To do so, UEI comprises five components: 1) an index set P of
symbolic index points pi ; 2) a mapping methodm : p 7−→ C that
maps each index point p to a set of data chunk C; 3) a data cache
U that caches a subset of uniformly sampled unlabeled data; 4) a
set of labeled data L that contains all data that has been labeled by
the user, and 5) the exploration dataset D stored in a fully inverted
columnar format on a hard drive. The first four components reside
in the main memory.
UEI divides the operation of exploration into two phases: an

Index Initialization phase, and Interactive Exploration phase. The
first phase only needs to be executed once per each new dataset.
The second phase is specific to each exploration and discussed in
the next section (Section 3.2).

Index Initialization Phase: As illustrated in Algorithm 2, to
work with a new dataset, UEI first vertically (i.e., attribute-wise)
decompose the whole data set and sort each dimension (i.e., at-
tribute) based on the values in ascending order (lines 2 - 4). Since
each dimension of a typical exploratory dataset (e.g., scientific,
business analysis) can contain values of an arbitrary length, and
one specific value for a dimension may appear multiple times,
we compress the data by organizing it in a key-value fashion
(< key, {values} >), where each value of the dimension would be
used as a key and the ids of the corresponding objects asvalues (as
illustrated in Figure 2). Note that for each exploration task, UEI
stores all needed data in one location, thus when exploring data
that are distributed in multiple locations (e.g., tables, files), the
data needs to be merged before being utilized in the exploration.

During the process of storing the data, UEI splits the distinct
values of each dimension d into a set of equal-sized data chunks
Cd = {cd i , ...,c

d
u }, where each chunk will be stored as a separate

file on the disk, and the size of each chunk can be adjusted based
on the size of the data and the available hardware resources (line
5). UEI also ensures that the values of each dimension are stored
in a sequential order, meaning values stored in each subsequence
chunk cd i+1 will be larger than the values that have been stored
in cd i for efficient lookup.

Once the data are partitioned and stored on the disk, UEIwould
start construct the set of symbolic index points P by divide the orig-
inal data space D into a set of equilateral d-dimensional subspaces
G = {дi , ...,дj }, where |G | = |P |, then for each subspace дi , UEI
constructs a symbolic index point pi that represents дi by using
the coordinates of the “virtual” center point of дi (lines 7-11). To
ensure UEI can be deployed in resource restricted environments,
the number of symbolic index point can be adjusted based on the
size of the dataset and the available hardware resources.

In order to construct and load each subspace дi into memory,
UEI employed a hash-based mapping methodm that records for

423

Algorithm 2 Typical Exploration Flow with UEI
Require: The raw data set D
Ensure: Result set T

1: P ← ∅, L ← ∅, U ← ∅
2: DC ← ver t icalDecompose (D)
3: for d = 1 to |DC | do
4: sor t (DCd)
5: C ← split IntoChunks (DCd)
6: end for
7: G ← split IntoSubspaces (D)
8: for each grid дi ∈ G do
9: pi ← computeCenter (дi)

10: P ← P ∪ {pi }
11: end for
12: U ← sample (D, γ)
13: M ← initialize predictive model for uncertainty estimation
14: while user continues the exploration do
15: drop any previously loaded data regions from U
16: M ← trained with L to update M
17: P ← updateUncer tainty (P,M)
18: p∗i ← choose the most uncertainty index point from P
19: д∗i ← load data region with m (p∗i)
20: U ← U ∪ дi
21: choose one x from U using M
22: solicit user’s label on x
23: L ← L ∪ {x }
24: U ← U − {x }
25: end while
26: T ← r esultRetr ieval (L)
27: Return the set of interesting data objects T

each symbolic index point pi , the set of chunks that are needed
to construct дi . As chunks are stored separately on the disk, this
approach allows UEI to quickly identify the data that needs to
be loaded. Since each data subspace д is stored as series of one-
dimensional data chunks, to reconstruct each д when needed, UEI
utilizes a hash table for efficiently merge of those data chunks.
During the merge process, UEI iterates through each dimension
and loads the corresponding chunks to the memory one at a time,
and each entry in the chunk would be visited in a sequential
manner. For each object ID that is recorded in a loaded data
chunk ci , the value associated with the ID will be inserted into
the corresponding entry in the hash table. Once a chunk has been
examined, UEI will release the memory space used to hold the
data chunk and reuse the space for the subsequent chunk.

3.2 UEI in Action
In the previous section, we have discussed the components of
UEI, as well as how the data are being stored and indexed, which
essentially covers the first half (i.e., lines 1 - 11) of the exploration
workflow, shown in Algorithm 2. In this section, we will discuss
the interactive exploration phase of UEI, which illustrates how a
typical active learning-based IDE task (i.e., Algorithm 1) can be
performed when incorporating UEI (lines 12 - 27, Algorithm 2).

Interactive Exploration Phase: After the index set has been
constructed, UEI begins the exploration by filling the unlabeled
set U . Specifically, for the original data space D, UEI would
uniformly sample a set of data from the underlying dataset (line
12), where the size of the samples γ can be adjusted based on
the system hardware specs (e.g., available main memory size).
As a result, a set of unlabeled objects U would be sampled and
cached in the main memory. These unlabeled objects will then be
used in the acquisition of the set of initial examples that will be

labeled by the user to construct the initial predictive model M0
for uncertainty estimation. Query strategy will randomly sample
examples from U until the set of initial examples contains at least
one positive example and one negative example (line 13).

In each iteration, UEI updates the uncertainty of all index
points pi ∈ P based on the most recently trained predictive model
Mt−1 (line 17), which serves as the uncertainty estimator. Here the
uncertainty of a data object is essentially equals to the probability
of one object being either positive or negative class, with a value
that equal to 50% being the most uncertain. Then, the index point
p∗i for which the current exploration model is most uncertain, will
be chosen (line 18), such that:

p∗i = Argmax
pi ∈P

Mt−1 (Y |pi) (3)

where Y = {0,1} is set of binary labels.
Based on the chosen p∗i , UEI uses the mapping method m to

identify and load (into the memory) all data chunks that corre-
spond to the subspace д∗i , which was represented by p∗i (line 19).
As mentioned earlier, the mapping method m is simply a hash
table that maps a single index point p into a set of data chunks
located on the disk. Later, the data of subspace д∗i together with
the unlabeled dataset U will be used by the query strategy (i.e.,
uncertainty sampling) in the selection of the example to be labeled
in the current iteration (lines 20 - 22). To reduce memory usage, by
default UEI kept only one uncertain data region д∗i in the memory
at any given time. Once the user is satisfied with the exploration
result, the resultRetrieval method will be invoked to retrieve the
exploration results and present them to the user (lines 26 - 27).

Tuning Interactive Exploration: In addition to the above typ-
ical exploration flow, UEI further allows the user to specify a
response latency threshold σ that determines the latency between
each exploration iteration (i.e., two subsequent examples). Us-
ing the user-specified σ , UEI determines whether or not to defer
the swap between the current in-memory uncertain region д∗i and
the next uncertain region д∗i+1, when д∗i is no longer the most
uncertain region.

In the case when an extremely low σ is specified that makes
it impossible for the system to load the entire subspace д∗i into
main memory, UEI would start fetching the corresponding data
chunks that associated with д∗i+1 (in the background) θ iterations
before д∗i+1 is loaded into the memory. Here, θ is a tunable variable
that can also be inferred based on the average loading time τ of
data regions, and the configurable latency threshold σ , such that
θ =

⌈
τ
σ

⌉
.

3.3 Time Complexity of UEI
Clearly, the time complexity of UEI is dominated by the inter-
active exploration phase. As discussed in Section 3.1, the initial-
ization phase is done once for each dataset and the time required
for UEI to prepare and store a dataset D on secondary storage is
simply linear with respect to the number items n stored in D.

As discussed in Section 3.2, each iteration of the interactive
exploration phase in UEI is dominated by the time taken to load
the data from the chunks stored on the disk into the memory,
which is linear with respect to the number of dimensions k and
the number entries e stored in the loaded chunks. In contrast, each
iteration in the current IDE approaches needs to load and examine
all data items n (e <<< n).

Therefore, the time complexity of the UEI-enhanced data ex-
ploration generally is reduced from O (kn) where n is the number
of data objects to O (ke) where e is the number entries associated

424

Figure 3: UEI Accuracy (Small
Target Region).

Figure 4: UEI Accuracy
(Medium Target Region).

Figure 5: UEI Accuracy (Large
Target Region).

Figure 6: UEI Response Time.

Table 1: PARAMETERS

Number of runs per result 10
Number of dimensions (D) 5
Number of relevant regions 1
Cardinality of relevant regions 0.1% (S), 0.4% (M), 0.8% (L)
Uncertainty Estimator DWKNN [11]
Label Type Binary
Data Storage Engine UEI, MySQL
Size of Individual Data Chunk 470KB
Number of Symbolic Index Points 3125
Latency Threshold 500ms
Performance Measurement F-Measure (Accuracy)

with the loaded chunks for the current most uncertain subspace
д∗i .

4 EXPERIMENTAL EVALUATION
In our experimental evaluation of our UEI, we use REQUEST [9],
a state-of-the-art IDE system, with two schemes, one incorporating
UEI, and one utilizing MySQL, used in the existing IDE systems
[7, 12]. After describing our experimental setup in Section 4.1, we
present the findings of our experimental evaluation in Section 4.2.

4.1 Experiment Setup
Dataset: We used 40 GB of real-world dataset from Sloan Digital
Sky Survey (SDSS) [1] that consists of 10 × 106 tuples.

IDE System: In our experiments, we employed our REQUEST
[9] with traditional uncertainty sampling and the dual weighted
k-nearest neighbor (DWKNN) [11] as the uncertainty estimator.

Environment: We implemented both REQUEST and UEI with
Java JRE 1.7. All the experiments were run on a machine with Intel
Core i7 Processor, 32 GiB RAM and 2 TB of NVMe SSD. The fast
NVMe SSD was used to eliminate any potential bottleneck due to
physical IO limitation. All experiments reported are averages of
10 complete runs. We have considered five numerical attributes
rowc, colc, ra, dec and field of the PhotoObjAll table.

Target Interest Regions: The exploration task characterizes user
interests and eventually predicts the relevant regions by iteratively
gathering user labeled tuples. We experimented with 1 region per
each exploration task. In addition, we vary the single region com-
plexity based on the data space coverage of the relevant regions.
Specifically, we categorize relevant regions to small, medium and
large. Small regions have cardinality with an average of 0.1% of
the entire experimental dataset, medium regions a cardinality of
0.4%, and large regions a cardinality of 0.8%. Furthermore, the
dimensionality of the target interest regions is the same as the
dimensionality of the dataset across the entire experiment.

User Simulation For experiment evaluation purpose, we simulate
the user behavior using the following method. For each target in-
terest region, we simulate the user by executing the corresponding
range query to collect the exact target set of relevant tuples. We
rely on this “oracle" set to assign confidence score p to the tuples
we extract in each iteration based on their location in the data
space against the target region.

More specifically, for each relevant region, there is a region
center and a set of region widths, one for each dimension. We
define the maximum relative distance d of an example against the
region center as:

d =maxi=1..l (|xi − ci |/wi) (4)

where l is the dimension number, | · | is the absolute value operator,
xi , ci and wi are the attribute value of the example, of the center
and region width in each dimension.

Parameters: Table 1 summarizes the important settings in the
experiments.

4.2 Experiment Results
In our experiments we aimed to test UEI’s ability to provide an
interactive response time for datasets that are beyond the size of
main memory capacity, and to illustrate the benefit of searching
only a small set of cached objects with UEI against performing
an exhaustive search over the entire dataset. In our experiments,
we stored 10 million data items with both UEI and MySQL, and
restricted the memory footprint for both UEI and MySQL to be
within 400MB, which is ∼ 1% of the entire dataset. Figures 3 to 6
illustrates the effectiveness and efficiency of our proposed UEI.

UEI Accuracy (Figures 3 to 5): Compared to MySQL, we have
noticed that our proposed UEI requires more labeled examples in
the early stage of the experiment (e.g., below 70% of accuracy).
This is due to the fact that in the early stage, the classifier does
not have enough training samples to learn an accurate uncertainty
estimator (i.e., DWKNN classifier) that captures precisely the
user’s interesting regions. This causes the predictive model to
select less informative examples to be labeled by the user. Since
UEI uses uncertainty as the criteria for both the example selection
and the loading of data regions (i.e., subspaces), therefore the
negative effect of an inaccurate classifier has been magnified.

However, as the accuracy of the uncertainty estimator improves
with more labeled examples, we observed a significant boost in
performance of UEI in the later stages (e.g., above 80% accuracy)
of the exploration. This is expected as the the predictive model gets
more and more accurate with respect to the decision boundaries,
and thus can estimate more accurate uncertainties. Since UEI
rely on the uncertainty estimation for both the query strategy and
cache management, therefore, it benefits more noticeably than
the MySQL, which only rely on uncertainty estimation for query
strategy.

425

UEI Response time (Figure 6): Finally, we have measured the
response time for both UEI and MySQL based schemes. As shown
in Figure 6, UEI achieves 50x faster response time than MySQL,
and ensures the sub-second interactive response time across all
data region sizes. Note the response time remains the same across
all three target interest regions sizes, which is as expected because
the runtime complexity of the uncertainty sampling-based systems
only depends on the size of the dataset and not the size of the
target interest regions.

From the experiments, it is clear that due to the fact that uncer-
tainty sampling requires an exhaustive search over the entire data
spare, thus the physical bandwidth of the secondary storage has
become the major bottleneck that severely limits the scalability of
active learning-based IDE systems.

Even though in our experiments, we have used NVMe based
SSD with I/O throughput of around 3.4GB/s, the uncertainty sam-
pling still takes over 12 seconds to complete the exhaustive search
in each iteration. Therefore, it is still impossible to explore datasets
that exceed the main memory capacity without UEI.

5 RELATED WORK
Traditionally, indexing has been the core technique for optimiz-
ing response time in database systems. Recently, main-memory
indexing and specialized access methods have been proposed
to support domain-specific query processing and analytics (e.g.,
[6, 17]). UEI is based on similar principles as these specialized
access methods. However, UEI, to the best of our knowledge,
is the first domain-specific access method with in-memory and
disk components that support interactivity and scalability of active
learning-based IDE systems.

The active learning-based IDE systems that can leverage our
proposed UEI for better scalability includes REQUEST [9], the
first active learning-based IDE system, and the two more recently
proposed systems, Dual-Space Model [12] and ExNav [10]. RE-
QUEST utilizes a two stages approach; a data reduction stage
aims to selectively reduce the search space while keeping all rel-
evant data regions, and a query selection stage that utilizes an
active learning-based predictive model to iteratively improve the
accuracy of the constructed exploratory query through interactions
with the user. Dual-Space Model uses a new uncertainty sampling-
based predictive model and a new dual-space pruning technique
that focuses solely on exploration tasks with a single relevant
region. It also optimizes these tasks for faster model convergence.
ExNav is the first uncertainty sampling-based IDE system that
specializes in exploring a variety of unstructured data sets by
leveraging the corresponding data embedding methods for each
unstructured data type [10].

In addition to the active learning-based IDE systems, UEI can
also be utilized in other active learning-based Human-in-the-loop
(HIL) systems. For example, in [18], the authors have proposed an
active learning-based HIL system, called SystemER, for learning
Entity Resolution models through user interactions. Another ex-
ample of an active learning-based HIL application is fact-checking.
In [4], the author has proposed an effective active learning-based
HIL system for identifying various types of potentially misleading
or false information for news contents. Most recently, [19] has
proposed to use active learning for learning the implicit struc-
tured representations of entity names, which can be useful for
many entity-related tasks such as entity normalization and variant
generation. To facilitate the process of learning such structured
representations, a user-friendly interface called PARTNER has
been designed to enhance the user’s interaction experience.

6 CONCLUSION
In this paper, we present the Uncertainty Estimation Index (UEI),
the first indexing mechanism that enables active learning-based
IDE systems to explore datasets that exceed the main memory
capacity. Instead of requiring all data to be loaded into the main
memory as in existing active learning-based IDE systems for sub-
second respond times, UEI enables the scalability by dynamically
identify and caching the set of objects that are most uncertain to
the current stage of the exploration. It achieves this by maintaining
a small in-memory index that estimates the aggregated uncertainty
value of the data items in the entire data subspaces. UEI also
employees columnar-based secondary storage and combines it
with an inverted index to support efficient loading of the necessary
data items at each iteration.

Our experimental evaluation using real-world data show that
a state-of-the-art IDE systems using UEI greatly outperforms a
DBMS-based version of the same IDE system by provide more
than 50x runtime efficiency when the size of the dataset exceed
the main memory capacity, and is capable of achieving sub-second
response time for data that is 100 times larger than the available
memory while achieving the desired exploration accuracy and
effectiveness. In conclusions, UEI can be used not only with
existing active learning-based IDE but with other active learning-
based Human-in-the-loop systems as well to achieve significantly
higher scalability by removing the main memory restriction.

REFERENCES
[1] SDSS Samples Queries - http://cas.sdss.org/dr4/en/help/docs/realquery.asp.
[2] A. Anagnostopoulos, L. Becchetti, C. Castillo, A. Gionis. 2010. An Optimiza-

tion Framework for Query Recommendation. In ACM WSDM. 161–170.
[3] A. Arasu, M. Götz, R. Kaushik. 2010. On active learning of record matching

packages. In ACM SIGMOD. 783–794.
[4] S. Bhattacharjee, A. Talukder, B. Balantrapu. 2017. Active learning based news

veracity detection with feature weighting and deep-shallow fusion. In IEEE
BigData. 556–565.

[5] W. Cai, Y. Zhang, J. Zhou. 2013. Maximizing Expected Model Change for
Active Learning in Regression. In IEEE ICDE. 51–60.

[6] G. Chatzigeorgakidis, D. Skoutas, K. Patroumpas, T. Palpanas, S. Athanasiou,
S. Skiadopoulos. 2019. Local Similarity Search on Geolocated Time Series
Using Hybrid Indexing. In ACM SIGSPATIAL. 179–188.

[7] K. Dimitriadou, O. Papaemmanouil, Y. Diao. 2016. AIDE: An Active Learning-
Based Approach for Interactive Data Exploration. In TKDE, 28:2842–2856.

[8] A. Freytag, E. Rodner, J. Denzler. 2014. Selecting Influential Examples: Active
Learning with Expected Model Output Changes. In ECCV. 562–577.

[9] X. Ge, Y. Xue, Z. Luo, M. Sharaf, P. Chrysanthis. 2016. REQUEST: A Scal-
able Framework for Interactive Construction of Exploratory Queries. In IEEE
BigData. 4566–4579.

[10] X. Ge, X. Zhang, P. Chrysanthis. 2020. ExNav: An Interactive Big Data
Exploration Framework for Big Unstructured Data. In IEEE BigData.

[11] J. Gou, L. Du, Y. Zhang, T. Xiong, et al. 2012. A new distance-weighted
k-nearest neighbor classifier. In J. Inf. Comput. Sci, 9(6):1429–1436.

[12] E. Huang, L. Peng, L. Palma, A. Abdelkafi, A. Liu, Y. Diao. 2019. Optimization
for active learning-based interactive database exploration. In VLDB. 71–84.

[13] S. Islam, C. Liu, R. Zhou. 2013. A framework for query refinement with user
feedback. In J. Syst. Softw., 86(6):1580-1595.

[14] D. Lewis W. Gale. 1994. A sequential algorithm for training text classifiers. In
ACM SIGIR. 3–12.

[15] Z. Liu , J. Heer. 2014. The Effects of Interactive Latency on Exploratory Visual
Analysis. In IEEE TVCG, 20(12):2122–2131.

[16] B. McCamish, V. Ghadakchi, A. Termehchy, B. Touri, and L. Huang. 2018.
The Data Interaction Game. In ACM SIGMOD. 83–98.

[17] B. Peng, P. Fatourou, T. Palpanas. 2020. MESSI: In-Memory Data Series
Indexing. In IEEE ICDE. 337–348.

[18] K. Qian, L. Popa, P. Sen. 2019. SystemER: A Human-in-the-loop System for
Explainable Entity Resolution. PVLDB 12, 12, 1794–1797.

[19] K. Qian, P. Raman, Y. Li, L. Popa. 2020. Learning Structured Representa-
tions of Entity Names using Active Learning and Weak Supervision. CoRR
abs/2011.00105.

[20] B. Settles. 2009. Active learning literature survey. Technical Report. University
of Wisconsin-Madison.

[21] H. S. Seung, M. Opper, and H. Sompolinsky. 1992. Query by Committee. In
ACM Workshop on Computational Learning Theory.

[22] Y. Zhang, Y. Wang, W. Cai, S. Zhou, Y. Zhang. 2017. From Theory to Practice:
Efficient Active Cost-sensitive Classification with Expected Error Reduction.
In SIAM. 153–161.

[23] Zheng Zhao and Huan Liu. 2007. Semi-supervised Feature Selection via
Spectral Analysis. In SDM. 641–646.

426

	On Supporting Scalable Active Learning-based Interactive Data Exploration with Uncertainty Estimation IndexXiaoyu Ge, Panos Chrysanthis

