
Human-Interpretable Rules for Anomaly Detection in
Time-series

Ines Ben Kraiem
University of Toulouse - UT2J, IRIT

Toulouse, France
ines.ben-kraiem@irit.fr

Faiza Ghozzi
University of Sfax- ISIMS, MIRACL

Sfax, Tunisie
faiza.ghozzi@isims.usf.tn

Andre Peninou
University of Toulouse- UT2J, IRIT

Toulouse, France
andre.peninou@irit.fr

Geoffrey Roman-Jimenez
CNRS, IRIT

Toulouse, France
geoffrey.roman-jimenez@irit.fr

Olivier Teste
University of Toulouse- UT2J, IRIT

Toulouse, France
olivier.teste@irit.fr

ABSTRACT
Anomaly detection in time series is a widely studied issue inmany
areas. Anomalies can be detected using rule-based approaches
and human-interpretable rules for anomaly detection refer to
rules presented in a format that is intelligible to analysts. Learning
these rules is a challenge but only a fewworks address the issue of
detecting different types of anomalies in time-series. This paper
presents an extended decision tree based on patterns to generate
a minimized set of human comprehensible rules for anomaly
detection in univariate times-series. This method uses Bayesian
optimization to avoid manual tuning of hyper-parameters. We
define a quality measure to evaluate both the accuracy and the
intelligibility of the produced rules. Experiments show that our
approach generates rules that outperforms the state of- the-art
anomaly detection techniques.

1 INTRODUCTION
Anomaly detection in time series is a widely studied issue in
many areas such as financial markets, sensor networks, habitat
monitoring, network intrusion, web traffic [1], and many others.
Time series are often affected by unusual events or untimely
changes (e.g., measurement error or faulty sensors) that need to
be detected and processed by users for analysis and exploration
[7].
In a real context, experts may observe some interesting local
phenomena, which can be seen as remarkable points in time
series. Using their domain knowledge, the experts investigate
sequences of remarkable points to detect and locate anomalies.
Experts can also build decision rules manually to detect future
occurrences of these anomalies. However, as the amount of col-
lected data is increasing, the decision rules become more complex
to define which makes the analysis more difficult. Automatic rule
extraction and detection of different types of anomalies can be of
considerable interest to an expert, leading to appropriate action
that can save a lot of time and value. To overcome this challenge,
rule learning algorithms have been proposed [2, 12]. Deploying
such systems might reveal comprehensible information to the
users to explain the root cause of anomalies better than black-box
algorithms.

To address these challenges, we provide a machine learning
method to generate human-interpretable rules for anomaly de-
tection in time-series, called Composition-based Decision Tree

© 2021 Copyright held by the owner/author(s). Published in Proceedings of the
24th International Conference on Extending Database Technology (EDBT), March
23-26, 2021, ISBN 978-3-89318-084-4 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

(CDT) 1. This method uses patterns to identify remarkable points.
The compositions of remarkable points existing into time-series
are learned through a specific decision tree that finally produces
intelligible rules. To avoid manual tuning, we use Bayesian hyper-
parameter optimization to get the best hyper-parameters for our
model. The approach aims at finding the best compromise be-
tween a high accuracy during anomaly detection and aminimized
set of easily human-interpretable rules. We conduct experiments
on three real-world datasets and three synthetic datasets. The
results show the effectiveness of our method compared to both
pattern-based methods and rule-based methods for anomaly de-
tection.

2 RELATEDWORK
Numerous works on anomaly detection in time-series had been
covered under various surveys and reviews [3, 13]. Several fields
of study are related to pattern-based time-series data mining
and rule-learning methods for anomaly detection. Pattern-based
methods aim to discover frequent [4, 5] or infrequent sub-sequences
[16] from a time-series. In contrast to our method, these methods
are less suitable for detecting multiple anomalies and can only
find a specific type of anomaly. Rule-learning methods aim to
find regularities in data that can be expressed in the form of
IF-THEN-like rules [2, 9, 11]. In general, the rules are evaluated
based on accuracy or the number of rules produced by these al-
gorithms. In this paper, instead of only evaluating the rules based
on these criteria, we introduce a quality measure, which takes
into account the number of used patterns as well as the length
of rules, to make the rules simpler to interpret. We also propose
a function that seeks a compromise between the interpretability
of the rules and their precision.

3 METHODOLOGY
In this section, we describe our Composition-based Decision Tree
(CDT) method for anomaly detection and rule extraction.

3.1 Time-Series Preprocessing
Definition 1.Anunivariate time-series is defined as𝑇𝑠 = {𝑥1, ..., 𝑥𝑛}
where∀𝑖 ∈ [1..𝑛], 𝑥𝑖 ∈ R such that values 𝑥𝑖 are uniformly spaced
in time and 𝑛 is the size of 𝑇𝑠 .

The time series are collected from different sensors and the
values of measures are on different ranges. To achieve scale and
offset invariance, we normalize each continuous time-series𝑇𝑠 to
values within the range [0, 1]. Resampling could also be used to
provide additional structure or to smooth time series and remove

1https://github.com/IBK-TLS/CDT

Short Paper

Series ISSN: 2367-2005 457 10.5441/002/edbt.2021.51

https://OpenProceedings.org/
http://dx.doi.org/10.5441/002/edbt.2021.51

any noise; e.g., downsampling reduces the frequency of time-
series observations.

3.2 Time-Series Labeling
To detect anomalies, experts first analyze the neighborhood of
a point (unusual variations) such as the point which precedes it
and follows it to decide if is a remarkable point. Based on this
idea, we label each point of the time series by checking every
three successive points using patterns.

Let us considers three successive points such as 𝑥𝑖−1, 𝑥𝑖 , 𝑥𝑖+1
of a time-series. Considering all possible variations between these
three points, we define nine possible variations, which can occur
between successive points, as listed in Table 1 namely, PP (Pos-
itive Peak), PN (Negative Peak), SCP (Start Constant Positive),
SCN (Start Constant Negative), ECP (End Constant Positive), ECN
(End Constant Negative), CST (Constant), VP (Variation Positive)
and VN (Variation Negative). Each of these variations can have
different magnitudes into [-1,1]. To identify fine variations of
values between three points, we refine each variation by defining
intervals of variations into [-1,1].

Hyper-parameter (𝛿).We denote𝛿 the hyper-parameter used
to distinguish the different magnitudes considered for each of the
nine variations (PP, PN, SCP, SCN, ECP ECN, CP, VN, and CST).
𝛿 allows the introduction of fine amplitude shifts in the varia-
tions to capture the shape complexity in time-series, typically
small or large amplitudes. 𝛿 represents the number of disjointed
sub-intervals considered in [-1,1] and will be determined automat-
ically using Bayesian optimization. For a given 𝛿 , we construct
2𝛿 + 1 intervals : i) 𝛿 sub-intervals for positive variations in]0, 1],
ii) 𝛿 intervals for negative variations in [−1, 0[, and iii) 1 special
case for the absence of variation (equal to 0).

For the sake of simplicity, in the rest of the paper, we only
consider notation with 𝛿 = 2 (other values of 𝛿 will only result in
a larger variety of intervals and patterns), and we denote the 5
resulting intervals as follows: Low (L) =]0,0.5], High (H) =]0.5,1],
-Low (-L) = [-0.5,0[, -High (-H) = [-1,-0.5[, and the special case,
Zero (Z) = 0.

Definition 2.We define a pattern annotated 𝑃 = (𝑙 , 𝛼 , 𝛽) where
𝑙 is a name (or label) identifying the pattern, and 𝛼 and 𝛽 are
two possible intervals from [-1,1]. For each successive points
𝑥𝑖−1, 𝑥𝑖 , 𝑥𝑖+1, the point𝑥𝑖 is checked by a pattern only if𝑥𝑖−𝑥𝑖−1 ∈
𝛼 ∧ 𝑥𝑖 − 𝑥𝑖+1 ∈ 𝛽 . In this case, 𝑥𝑖 is labeled with 𝑙 . For the rest of
the paper, labels are denoted by the name of the variation (PP,
PN, etc.).

Fig. 1 (left) illustrates an example of a pattern 𝑃𝑃𝐿,𝐻 that helps
us to find one remarkable point from a time-series. This time-
series represents the consumption data of a building’s calorie
sensor. Fig. 1 (right) shows examples of different magnitudes of
pattern such as 𝑃𝑃𝐿,𝐻 , 𝑃𝑃𝐿,𝐿 and 𝑃𝑃𝐻,𝐻 . Using these patterns,
we can automatically label each point in time series.

Figure 1: Example of different magnitudes of a pattern.

Definition 3.A labeled times-series annotated𝑇𝑠𝑏 = {𝑙1, ..., 𝑙𝑁 }
with 𝑁 = 𝑛 − 2 where each 𝑥𝑖 point of the initial time-series (𝑇𝑠)
is replaced by the label of its corresponding pattern.

Table 1: Types of variation for labelling.

3.3 Composition-based Decision Tree
Given the time series labeling, we built an extension of the deci-
sion tree based on pattern compositions to produce rules able to
detect anomalies.

Classically, a decision tree is induced from observations com-
posed of feature values and a class label. It is built by splitting
the training data into subsets by choosing the feature which best
partitions the training data according to an evaluation criterion
(e.g., Shannon’s entropy, Gini index). This criterion characterizes
the homogeneity of the subsets obtained by division of the data
set. This process is recursively repeated on each derived subset
until all instances in a subset belong to the same class label [10].

The classical decision tree considers features without any or-
der when splitting the datasets. Conversely, in our approach, we
would like to keep the order of the time series. Thus, our deci-
sion tree is built, by considering nodes as pattern compositions
(ordered sequences of remarkable points) with the highest in-
formation gain. These compositions are calculated from a set of
observations (sub-sequences of labeled time-series). The input of
the tree is constructed by creating fixed sized sliding windows.

Definition 4. A set of observations annotated 𝐷 = {𝑑1, 𝑑2, ...,
𝑑𝑁−𝜔+1} = {{𝑙1, ..., 𝑙𝜔 }, {𝑙2, ..., 𝑙𝜔+1},..., {𝑙𝑁−𝜔+1, ..., 𝑙𝑁 }} repre-
sents the result of cutting 𝑇𝑠𝑏 by a sliding window of size 𝜔 ,
and using a fixed step size equal to one. Let M be the number of
classes of observations. In our context, we consider two classes
(M = 2): the abnormal class (observation with anomaly), or the
normal class (observation without anomaly). Each 𝑑𝑖 observation
is associated with only one class annotated 𝑐𝑙𝑎𝑠𝑠 (𝑑𝑖).

458

To determine a probability distribution of the observations
over the classes, we introduce an impurity measure of a set of
observations 𝐷 𝑗 ⊆ 𝐷 . In our method, we opt to the Gini index.
The Gini impurity index, annotated𝐺 (𝐷 𝑗), provides a measure of
the quality of𝐷 𝑗 according to the distribution of the observations
into the classes. The impurity metric is minimal (equal to 0) if
a set contains only observations of one class, and it is maximal
(equal to 0.5) if the set contains equally observations of all classes.

Hyper-parameter (𝜔). We denote 𝜔 <= 𝑁 /2 the window
size to define observations. This hyper-parameter will be deter-
mined automatically using Bayesian optimization.

From an observation with anomaly we can define a composition
used to split a node into two sub-nodes.

Definition 5. A composition annotated 𝑐 is a sub-sequence of
labels of an observation 𝑑𝑖 . We denote 𝑐 ⊆𝑜 𝑑𝑖 .

Example. Considering 𝑑 = {𝑙1, 𝑙2, 𝑙3, 𝑙4, 𝑙5, 𝑙6}, some compo-
sitions are 𝑐 = {𝑙2, 𝑙3, 𝑙4} ⊆𝑜 𝑑 , 𝑐 = {𝑙3, 𝑙2, 𝑙4} ⊈𝑜 𝑑 , and 𝑐 =

{𝑙1, 𝑙2, 𝑙3, 𝑙4, 𝑙5, 𝑙6} ⊆𝑜 𝑑 .
We also introduce additional notations: 𝑐 ∈𝑜 𝐷 when ∀𝑑 ∈
𝐷, 𝑐 ⊆𝑜 𝑑 , and 𝑐 ∉𝑜 𝐷 when ∀𝑑 ∈ 𝐷, 𝑐 ⊈𝑜 𝑑 .

A decision tree is built based on features that have the highest
Information Gain [10]. In CDT, the compositions are compared
according to the information gain, noted 𝐼𝐺 , they provide.

The entire flow of the CDT approach we proposed is described
by Algorithm 1. This algorithm builds a decision tree; we de-
fine a tree node as a quadruplet: observations (the set of obser-
vations considered in this node), a composition (used to split
observations in two child nodes), childTrue (the node of obser-
vations satisfying the composition), and childFalse (the node of
observations that do not satisfy the composition). An example
corresponding to the root node is given in line 1. We introduce
a function 𝑙𝑖𝑠𝑡_𝑜 𝑓 _𝑎𝑙𝑙_𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒_𝑐𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠 () to compute all
compositions deduced from a set 𝐷 𝑗 (line 6). For each composi-
tion, we calculate the information gain to split a node (line 7–15).
At line 16, if𝐺 (𝐷 𝑗) ≠ 0 means that the set of observations of the
node is impure (observations are of different classes). Moreover,
𝑚𝑎𝑥𝐺𝑎𝑖𝑛 ≠ 0 means that a composition that splits the set of
observations has previously been found: in this case, we create
a node 𝑁𝑖𝑛𝑐 that will determine the positive branch of the node
(𝑐 ∈𝑜 𝐷 𝑗), whereas 𝑁𝑒𝑥𝑐 will be the negative one (𝑐 ∉𝑜 𝐷 𝑗) (line
16–25). We repeat these steps until there are no more nodes to
process (line 3–26).

Example. Fig. 2 illustrates an example of CDT result. The
root-node is 𝐷1, and it represents the whole training set of obser-
vations used for the construction of the CDT. The leave-nodes
represent class labels and branches represent conjunctions of
compositions that lead to those class labels. As shown in Fig. 2,
the CDT is composed of 3 splits constructing a set of 3 leaves
S = {𝑆1, 𝑆2, 𝑆3}.

3.4 Rule Generation for Anomaly Detection
We convert the CDT into a set of decision rules. We only consider
“pure leaf-nodes” leading to the anomaly class.

Definition 6. A rule predicate, annotated 𝑅𝑠 is a branch of the
decision tree leading to the anomaly class. It is constructed by
combining (conjunction) the successive compositions 𝑐𝑖 or ¬𝑐𝑖
from the leaf-node to the root-node. For each positive branch
(𝑐𝑖 ∈𝑜 𝐷 𝑗), the positive composition 𝑐𝑖 is deduced whereas a
negative composition ¬𝑐𝑖 is deduced from a negative branch
(𝑐𝑖 ∉𝑜 𝐷 𝑗).

Algorithm 1 CDT: Composition-based Decision Tree

Input: 𝐷 = {𝑑1, 𝑑2, ..., 𝑑𝑁−𝜔+1} a set of observations
Output: 𝑁𝑟𝑜𝑜𝑡 the root node of CDT
1: 𝑁𝑟𝑜𝑜𝑡 ← 𝑁𝑜𝑑𝑒 (𝐷,𝑛𝑢𝑙𝑙, 𝑛𝑢𝑙𝑙, 𝑛𝑢𝑙𝑙)
2: 𝑞 ← [𝑁𝑟𝑜𝑜𝑡] // construct the queue of nodes to split
3: while 𝑞 ≠ ∅ do
4: 𝑁 𝑗 ← 𝑞.𝑝𝑜𝑝 () // dequeue the first node from the queue
5: 𝐷 𝑗 ← 𝑁 𝑗 .𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠

6: 𝐶 𝑗 ← 𝑙𝑖𝑠𝑡_𝑜 𝑓 _𝑎𝑙𝑙_𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒_𝑐𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠 (𝐷 𝑗)
7: 𝑚𝑎𝑥𝐺𝑎𝑖𝑛 ← 0
8: 𝑐𝑏𝑒𝑠𝑡 ← 𝑛𝑢𝑙𝑙

9: // Choose the composition that has the best Gain
10: for all 𝑐 ∈ 𝐶 𝑗 do
11: if 𝐼𝐺 (𝐷 𝑗 , 𝑐) > 𝑚𝑎𝑥𝐺𝑎𝑖𝑛 then
12: 𝑚𝑎𝑥𝐺𝑎𝑖𝑛 ← 𝐼𝐺 (𝐷 𝑗 , 𝑐)
13: 𝑐𝑏𝑒𝑠𝑡 ← 𝑐

14: end if
15: end for
16: if 𝐺 (𝐷 𝑗) ≠ 0 and𝑚𝑎𝑥𝐺𝑎𝑖𝑛 ≠ 0 then
17: 𝐷𝑖𝑛𝑐 ← {𝑑 ∈ 𝐷 𝑗 |𝑐𝑏𝑒𝑠𝑡 ∈𝑜 𝑑}
18: 𝐷𝑒𝑥𝑐 ← {𝑑 ∈ 𝐷 𝑗 |𝑐𝑏𝑒𝑠𝑡 ∉𝑜 𝑑}
19: 𝑁𝑖𝑛𝑐 ← 𝑁𝑜𝑑𝑒 (𝐷𝑖𝑛𝑐 , 𝑛𝑢𝑙𝑙, 𝑛𝑢𝑙𝑙, 𝑛𝑢𝑙𝑙)
20: 𝑁𝑒𝑥𝑐 ← 𝑁𝑜𝑑𝑒 (𝐷𝑒𝑥𝑐 , 𝑛𝑢𝑙𝑙, 𝑛𝑢𝑙𝑙, 𝑛𝑢𝑙𝑙)
21: 𝑞.𝑎𝑝𝑝𝑒𝑛𝑑 (𝑁𝑖𝑛𝑐) // enqueue child nodes
22: 𝑞.𝑎𝑝𝑝𝑒𝑛𝑑 (𝑁𝑒𝑥𝑐)
23: 𝑁 𝑗 .𝑐𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 ← 𝑐𝑏𝑒𝑠𝑡
24: 𝑁 𝑗 .𝑐ℎ𝑖𝑙𝑑𝑇𝑟𝑢𝑒 ← 𝑁𝑖𝑛𝑐

25: 𝑁 𝑗 .𝑐ℎ𝑖𝑙𝑑𝐹𝑎𝑙𝑠𝑒 ← 𝑁𝑒𝑥𝑐

26: end if
27: end while
28: return 𝑁𝑟𝑜𝑜𝑡

D1

𝑐1 = [𝑃𝑁−𝐻,−𝐿, 𝑆𝐶𝑃𝐿,0]

H L 0

D2 𝑆1

𝑐2 = [𝐸𝐶𝑃0,−𝐿, 𝑃𝑃𝐿,𝐻]
0 L

H

Anomaly
(support: 128)

𝑆2
Anomaly
(support: 55)D3

𝑐3 = [𝐸𝐶𝑁0,𝐻 , 𝑃𝑁−𝐻,−𝐻]
0

H H

𝑆3
Anomaly
(support: 24)

false

false true

true

false true

Figure 2: Illustration of a Composition-based Decision
Tree (CDT).

Example. Three rules predicate are produced from the CDT
in Fig. 2.
• 𝑅𝑆1 : 𝑐1 = [𝑃𝑁−𝐻,−𝐿, 𝑆𝐶𝑃𝐿,0]
• 𝑅𝑆2 : 𝑐2 ∧ ¬𝑐1 = [𝐸𝐶𝑃0,−𝐿, 𝑃𝑃𝐿,𝐻] ∧ ¬[𝑃𝑁−𝐻,−𝐿,
𝑆𝐶𝑃𝐿,0]
• 𝑅𝑆3 : 𝑐3∧¬𝑐2∧¬𝑐1 = [𝐸𝐶𝑁0,𝐻 , 𝑃𝑁−𝐻,−𝐻] ∧¬[𝐸𝐶𝑃0,−𝐿,
𝑃𝑃𝐿,𝐻] ∧ ¬[𝑃𝑁−𝐻,−𝐿, 𝑆𝐶𝑃𝐿,0].

Using abusive notations, 𝑐𝑖∧¬𝑐 𝑗 means that for an observation
𝑑 on a time-series, we check 𝑐𝑖 ⊆𝑜 𝑑 ∧ 𝑐 𝑗 ⊈𝑜 𝑑 .

459

Definition 7. A rule, annotated R, is a disjunction of rule
predicates. For instance, as shown in Fig. 2, R = 𝑅𝑆1 ∨𝑅𝑆2 ∨𝑅𝑆3 =
(𝑐1) ∨ (𝑐2 ∧ ¬𝑐1) ∨ (𝑐3 ∧ ¬𝑐2 ∧ ¬𝑐1).

Rule Simplifications. One way to minimize CDT’s rules is to
post-process the produced rules through Boolean algebra sim-
plifications. We aim to minimize the “sum-of-products” forms of
Boolean functions. In our approach, this inter-branch simplifica-
tion is applied until there is no longer any simplification to be
made. This allows us tominimize the number of compositions in a
rule. Using Boolean algebra, we can simplify the rule R generated
from the tree in Fig. 2 as R = (𝑐1)∨ (𝑐2∧¬𝑐1)∨ (𝑐3∧¬𝑐2∧¬𝑐1) =
(𝑐1) ∨ (𝑐2) ∨ (𝑐3).

3.5 Quality Measure
We aim to generate rules that are both accurate and comprehensi-
ble. According to experts opinion, a comprehensible rule should
be short [2, 9] and should contain a minimized number of various
labels. Therefore, we defined the following criteria to evaluate a
quality of rules:
• I(𝑐) to characterize the quality of a composition 𝑐 depend-
ing on its length and the number of patterns used;
• M(𝑅𝑆) to characterize the quality of a rule predicate 𝑅𝑆
depending on the number of compositions and the quality
of each one (I(𝑐));
• Q(R) to characterize the quality of a rule R depending on
the quality of rule predicate and its support.

We first calculate the interpretability of a composition as:

I(𝑐) = 1 − 𝐿𝑐 .𝑁𝐿

𝜔.𝑀𝑎𝑥𝐿
(1)

where 𝐿𝑐 = |𝑐 | denotes the length of a composition 𝑐 , 𝑁𝐿 is
the number of unique labels used in a composition, 𝜔 is the
maximum window size, and𝑀𝑎𝑥𝐿 is the total number of labels.
Then, we calculate the average interpretability of a rule predicate
(conjunction of compositions) as:

M(𝑅𝑆) =
1
𝑁𝑐

𝑁𝑐∑︁
𝑘=1
I(𝑐𝑘) (2)

where 𝑁𝑐 is the number of compositions in a rule predicate 𝑅𝑆 .
Finally, extracted rules’ quality is calculated as:

Q(R) = 1
𝑆

𝑁𝑅𝑠∑︁
𝑖=1

𝑆𝑅𝑆𝑖
.M(𝑅𝑆𝑖) (3)

where 𝑁𝑅𝑠 is the number of rule predicates in R, 𝑆𝑅𝑆𝑖
is the

support of rule predicate (true positive) and 𝑆 is the support of all
rules predicates (true positive and true negative). A rule predicate
with high support is considered more important. Therefore, we
multiplicate the average interpretability of a rule predicate with
its support.

3.6 Hyper-Parameters selection
The manual tuning of hyper-parameters requires a prior knowl-
edge. Automatic search algorithms such as grid search and ran-
dom search could give good results. However, grid search is time
consuming and random search might not find the optimal set.
To address this problem, we use Bayesian Optimization [14] to
efficiently get the best hyper-parameters (𝛿 , 𝜔) for our model.
Indeed, we aim to find a configuration (that is, a set of parame-
ters) that maximizes a performance metric or an objective func-
tion. Hence, we defined a search space and we try to find the
hyper-parameters values of CDT that yield the highest result as

measured on a validation set. Hyper-parameter optimization is
presented as:

ℎ∗ = argmax
ℎ∈𝐻

𝐹 (ℎ) (4)

where 𝐹 (ℎ) represents an objective function to maximize, ℎ∗ is
the set of optimized hyper-parameters (𝛿 , 𝜔) and ℎ can take any
value in search space 𝐻 .

To optimize the trade-off between detection performance and
good quality of rules, we defined the objective function 𝐹 (ℎ) as
the F-measure weighted by our Q(R) rules’ quality measure.

𝐹 (ℎ) = 𝐹1(ℎ).Q(R) (5)

where 𝐹1(ℎ) is the F-measure (the harmonic mean of the preci-
sion and recall) of the classification performance obtained with
the set of parameters (ℎ).

4 EXPERIMENTS
For our evaluation, we use real-world datasets from the Manage-
ment and Exploitation Service (SGE) [6], and data from the Yahoo
datasets [8].We compare CDTwith state-of-the-art pattern-based
as well as rule-based methods for anomaly detection.

In SGE data sets, we aim to handle anomalies on calorie and
electric consumption datasets. Calorie data consists of 25 con-
sumption datasets from sensors deployed in different buildings
managed by the SGE. These measurements are daily data for
more than three years, about 33536 observations in total and they
contain 586 anomalies. Electricity measurements are collected
hourly for 10 years from one sensor (96074 in total). There are in
total 10343 anomalies in the electricity dataset.

The Webscope S5 dataset, which is publicly available in [8],
consists of 371 files divided into four categories, namedA1/A2/A3/
A4, each one containing respectively, 67/100/100/100 files. A1
Benchmark is based on real production traffic from actual web
services while classes A2, A3, and A4 contain synthetic anomaly
data. These datasets are represented by time-series in one-hour
units. There are a total of 94778 traffic values in 67 different files
and 1669 of these values are abnormal. The anomalies in the syn-
thetic datasets are inserted at random positions. A2 Benchmark
contains 142002 values with 466 anomalies while 168000 values
exist in A3 and A4 Benchmarks with respectively 943 and 837
anomalies.

4.1 Evaluation Process and Metrics
The performance of all the methods is compared based upon
the F1 score, the rules’quality metric Q, and the objective func-
tion 𝐹 (ℎ) used as defined in equation (5). We use the 𝐹1 score
and Q score to compare the accuracy of our method against
pattern-based methods. We use the 𝐹 (ℎ) score to evaluate both
the accuracy and the interpretability of the rules generated by
our CDT method compared to those of rule learning methods.
For evaluation, we split every dataset into three subsets: training
set (60%), validation set (20%), and testing set (20%) ratio. We
use the train and validation set to optimize the model’s hyper-
parameter values using Bayesian optimization. Then, we evaluate
the optimized model on testing set.

Hyper-Parameters Optimization. To limit the search space
of the Bayesian optimization, we constrained the parameter 𝜔
within [3,31] and 𝛿 within [1,21]. Table 2 shows the optimal
hyper-parameters found with the Bayesian optimization. As we
can see in Table 2, optimization on 𝐹 (ℎ) tends to favors a small
number of splits (𝛿) for patterns when compared to the 𝐹1 score
optimization. This is due to the quality measure of rules Q(R),

460

which looks for short rules that include a minimum number
of labels (𝛿). However, the size of observations (𝜔) needed to
construct an optimal CDT remains to be comparable for 𝐹1 and
𝐹 (ℎ) suggesting the need for presence of neighbors surrounding
an anomaly to achieve good anomaly detection with CDT.

Table 2: Parameters of CDT for experiments.

Evaluation F1-score F(h)-score
Dataset 𝜔 𝛿 𝜔 𝛿

SGE_Electricity 27 2 27 2
SGE_Calorie 5 4 21 1
Yahoo_A1 27 16 25 1
Yahoo_A2 17 2 17 1
Yahoo_A3 29 12 17 1
Yahoo_A4 25 8 21 1

4.2 Experiments with Pattern-based
Algorithms

We employ the following three approaches as baseline methods
to compare with our approach:
• Pattern-Based Anomaly Detection (PBAD) is an anom-
aly detection method based on frequent pattern mining
techniques in mixed-type time-series [4].
• Matrix Profile (MP) is an anomaly detection method based
on similarity-join to detect time series discords [15].
• Pattern Anomaly Value (PAV) is an anomaly detection
algorithm based on pattern anomaly value. The anomalies
are the infrequent linear pattern [16] .

To evaluate these methods, we used the implementation avail-
able in [4]. These algorithms are window-based approaches.
Hence, we used the recommended settings for each of them. We
split the time series into sliding windows of length 12 with a step
size 6. These anomaly detection algorithms provide an anomaly
score for each window. As these algorithms are unsupervised,
we build the anomaly detection model on the full-time series
data and we evaluate it using 𝐹1 score. For CDT, we used the
appropriate values of hyper-parameters calculated using F1-score
as provided in Table 2. All the data sets are normalized between
0 and 1 during the pre-processing phase. For Yahoo datasets and
SGE-Electricity we downsampled these datasets from hours to
days.

Result Analysis. Table 3 provides the 𝐹1 score obtained by
each algorithm on each of the six univariate time-series datasets.
The maximum values of 𝐹1 score for each dataset are given in

Table 3: Evaluation of Anomaly Detection using F1-score
for CDT and Pattern-based algorithms.

Dataset
Algorithm CDT PBAD PAV MP

SGE_Electricity 0.76 0.70 0.74 0.70
SGE_Calorie 0.85 0.80 0.88 0.91
Yahoo_A1 0.92 0.72 0.75 0.76
Yahoo_A2 0.99 0.65 0.99 0.76
Yahoo_A3 1.0 0.73 0.99 0.70
Yahoo_A4 0.98 0.75 0.93 0.96
Average 0.92 0.72 0.88 0.80

bold type. We also calculate the average rank of each method.
CDT outperforms the existing baselines in five of the six datasets.
It can be observed in Table 3 that our method is more stable for
different datasets than baselines. Note that for the competing
algorithms, the data should be balanced otherwise, the detection
results are poor. We have tested PBAD, PAV and MP on our initial
datasets and on a balanced version and we have noticed that its
performance highly degrades on the first case. In fact, they tend
to focus on the accuracy of predictions from the majority class
(normal class) which generates poor precision for the minority
class (anomaly class). Therefore, the results of PBAD, PAV and
MP in Table 3 are obtained on the balanced data.

4.3 Experiments with Rule Learning
Algorithms

We compare our CDT method with the following state-of-the-art
rule learning algorithms:
• PART is a combination of C4.5 and RIPPER rule learning
to produce rules from partial decision trees using C4.5
algorithm [9].
• JRip implements a rule learner and incremental pruning to
produce error reduction (RIPPER) [12]. Rules are formed
by greedily adding conditions to the antecedent of a rule.

We compare CDT with PART and JRip based on 𝐹1 score,
Q(R) and 𝐹 (ℎ) score (Table 4) and the number of rules produced
by the classifiers (Figure 3). We evaluated these methods using
WEKA. We use 10-fold cross validation to test and evaluate the
PART and JRip with the standard default setting of WEKA. For
CDT and each competitor, we use the hyper-parameters values
obtained to maximize 𝐹 (ℎ) − 𝑠𝑐𝑜𝑟𝑒 as provided in Table 2.

Result Analysis. Table 4 shows the comparison results for
each algorithm in the six datasets using 𝐹1, Q(R) and 𝐹 (ℎ) score.
Note that the results of the F1 score for CDT in Table 4 are
different from those in Table 3 because they are not evaluated
with the same hyperparameter values (Table 2).

Overall, the average scores show that our approach has got
the first position in ranking followed by PART and JRip. CDT
outperforms PART and JRip in all datasets in the 𝐹1 score, in
three of the six datasets in the Q(R) score and all datasets in
the 𝐹 (ℎ) score. We can observe from the Table 4 that JRip has
a high quality of rules Q(R) in three datasets as well as CDT.
This is due to the size of its generated rules that are quite short.
However, it is less accurate than CDT and PART in almost all
datasets. We can also see that none of the baseline algorithms
has good 𝐹 (ℎ) overall data sets. While CDT has the best tradeoff
between 𝐹1 score and Q(R) score.

Fig. 3 shows a summary of the number of rules produced by
each method. CDT produces a fewer number of rules between 5
and 16 rules. It is followed by JRip that produced reasonably few
rules between 15 and 30 rules. However, PART highly produces
rules that are between 24 and 142. This is due to the specificity
of the rules generated that have low support.

We present some examples of the generated rules by our CDT
algorithm from SGE data sets to detect multiple anomalies in
Table 5. As we can see, the rules with visualized patterns are
easy to intuitively understand and can be easily interpreted by
users. The experts give the following comments: the negative
peak is considered an anomaly because the energy consumption
in a building cannot be negative. The positive peak has occurred
following overconsumption in the building. The collective anom-
alies present abnormal variations in successive points. This is

461

Table 4: Evaluation of anomaly detection using the 𝐹1 score, the quality measure Q(R) and the objective function 𝐹 (ℎ).

Evaluation F1-score Q(R) F(h)-score

Dataset
Algorithm CDT PART JRip CDT PART JRip CDT PART JRip

SGE_Electricity 0.76 0.71 0.72 0.67 0.67 0.70 0.51 0.48 0.50
SGE_Calorie 0.99 0.80 0.79 0.61 0.65 0.69 0.60 0.52 0.54
Yahoo_A1 0.91 0.70 0.69 0.48 0.50 0.56 0.43 0.35 0.39
Yahoo_A2 0.99 0.80 0.77 0.69 0.68 0.65 0.68 0.54 0.50
Yahoo_A3 0.98 0.78 0.71 0.77 0.69 0.70 0.75 0.54 0.50
Yahoo_A4 0.97 0.73 0.75 0.70 0.70 0.68 0.68 0.51 0.51
Average 0.93 0.75 0.74 0.65 0.64 0.64 0.61 0.49 0.49

Figure 3: The number of rules generated for anomaly de-
tection.

due to a fault in the reading of the meters. Finally, the constant
anomaly illustrated a stop of the meter.

Table 5: Example of rules generated for anomaly detection
in the SGE_Calorie datasets.

5 CONCLUSION
We propose a machine learning method, CDT, that generates
human-interpretable rules based on a formalisation of 9 gen-
eral patterns of variations for multiple anomaly detection in
time-series. The approach is based on a modified decision tree
which considers nodes as pattern compositions. Using Bayesian
Optimization, we optimized the hyper-parameters such that it
maximizes both the rules’quality and the classification perfor-
mances. The performance of the presented method was tested
using the SGE and Yahoo datasets. Our approach appeared as
robust compared to the existing algorithms in conducted experi-
ments where their model accuracy decreases in case of multiple
anomalies and in generating few interpretable rules.

Future work will concern the improvement of the generated
rules. For instance, combine rules by a generalization and elimi-
nate redundant rules. Moreover, we could investigate other hyper-
parameters such as the size of down-sampling to improve the
quality of the generated rules. We could also expand our method
to suit multivariate time-series.

Acknowledgment. This PhD. was supported by the Manage-
ment and Exploitation Service (SGE) of the Rangueil campus
attached to the Rectorate of Toulouse and the research is made in
the context of the neOCampus project (Paul Sabatier University,
Toulouse).

REFERENCES
[1] Charu C. Aggarwal. 2015. Outlier analysis. In Data mining. Springer, Cham,

237–263.
[2] Nahla Barakat and Joachim Diederich. 2005. Eclectic rule-extraction from

support vector machines. International Journal of Computational Intelligence
2, 1 (2005), 59–62.

[3] Sina Däubener, Sebastian Schmitt Hao Wang, Peter Krause, and Thomas Bäck.
2019. Anomaly Detection in Univariate Time Series: An Empirical Comparison
of Machine Learning Algorithms. ICDM (2019).

[4] Len Feremans, Vincent Vercruyssen, Boris Cule, Wannes Meert, , and Bart
Goethals. 2019. Pattern-based anomaly detection in mixed-type time series.
Lecture Notes in Artificial Intelligence (2019).

[5] Zengyou He, Xiaofei Xu, Joshua Zhexue Huang, and Shengchun Deng. 2005.
FP-outlier: Frequent pattern based outlier detection. Computer Science and
Information Systems 2, 1 (2005), 103–118.

[6] Ines Ben kraiem, André Péninou Faiza Ghozzi, Geoffrey Roman-Jimenez, and
Olivier Teste. 2020. Automatic Classification Rules for Anomaly Detection in
Time-series. RCIS (2020).

[7] Ines Ben kraiem, André Péninou Faiza Ghozzi, and Olivier Teste. 2019. Pattern-
based method for anomaly detection in sensor networks. International
Conference on Enterprise Information Systems 1 (jan 2019), 104–113.

[8] Nikolay Laptev and Saeed Amizadeh. 2015. A labeled anomaly detection
dataset S5 Yahoo Research, v1. https://webscope.sandbox.yahoo.com/catalog.
php?datatype=s&did=70

[9] Daud Nor Ridzuan and Corne David Wolfe. 2009. Human readable rule
induction in medical data mining. In Proceedings of the European Computing
Conference (vol.1 ed.), Vol. 27 LNEE. 787–798.

[10] Jiang Su and Harry Zhang. 2006. A fast decision tree learning algorithm. In
AAAI, Vol. 6. 500–505.

[11] William W.Cohen. 1995. Fast effective rule induction. In Machine learning
proceedings 1995. Elsevier, 115–123.

[12] Ian H. Witten and Eibe Frank. 2005. Data Mining: Practical Machine Learning
Tools and Techniques (2nd ed.). Morgan Kaufmann.

[13] Hu-Sheng Wu. 2016. A survey of research on anomaly detection for time
series. In 2016 13th International Computer Conference on Wavelet Active
Media Technology and Information Processing. IEEE, 426–431.

[14] JiaWu, Xiu-Yun Chen, Hao Zhang, and al. 2019. Hyperparameter Optimization
for Machine Learning Models Based on Bayesian Optimization. Journal of
Electronic Science and Technology 17 (2019), 26.

[15] Chin-Chia Michael Yeh, Yan Zhu, Liudmila Ulanova, and al. 2016. Matrix
profile I: all pairs similarity joins for time series: a unifying view that includes
motifs, discords and shapelets. In 2016 IEEE 16th international conference on
data mining (ICDM). 1317–1322.

[16] Xiao yun Chen and Yan yan Zhan. 2008. Multi-scale anomaly detection
algorithm based on infrequent pattern of time series. J. Comput. Appl. Math.
214, 1 (2008), 227–237.

462

	Human-Interpretable Rules for Anomaly Detection in Time-SeriesInes Ben Kraiem, Faiza Ghozzi, André Péninou, Geoffrey Roman-Jimenez, Olivier Teste

